forked from tz28/deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_neural_network_with_gd.py
297 lines (280 loc) · 10.3 KB
/
deep_neural_network_with_gd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
#initialize parameters(w,b)
def initialize_parameters(layer_dims):
"""
:param layer_dims: list,每一层单元的个数(维度)
:return:dictionary,存储参数w1,w2,...,wL,b1,...,bL
"""
np.random.seed(3)
L = len(layer_dims)#the number of layers in the network
parameters = {}
for l in range(1,L):
# parameters["W" + str(l)] = np.random.randn(layer_dims[l],layer_dims[l-1])*0.01
parameters["W" + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])*np.sqrt(2/layer_dims[l-1]) # he initialization
# parameters["W" + str(l)] = np.zeros((layer_dims[l], layer_dims[l - 1])) #为了测试初始化为0的后果
# parameters["W" + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * np.sqrt(1 / layer_dims[l - 1]) # xavier initialization
parameters["b" + str(l)] = np.zeros((layer_dims[l],1))
return parameters
def relu(Z):
"""
:param Z: Output of the linear layer
:return:
A: output of activation
"""
A = np.maximum(0,Z)
return A
#implement the activation function(ReLU and sigmoid)
def sigmoid(Z):
"""
:param Z: Output of the linear layer
:return:
"""
A = 1 / (1 + np.exp(-Z))
return A
def forward_propagation(X, parameters):
"""
X -- input dataset, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2",...,"WL", "bL"
W -- weight matrix of shape (size of current layer, size of previous layer)
b -- bias vector of shape (size of current layer,1)
:return:
AL: the output of the last Layer(y_predict)
caches: list, every element is a tuple:(W,b,z,A_pre)
"""
L = len(parameters) // 2 # number of layer
A = X
caches = [(None,None,None,X)] # 第0层(None,None,None,A0) w,b,z用none填充,下标与层数一致,用于存储每一层的,w,b,z,A
# calculate from 1 to L-1 layer
for l in range(1,L):
A_pre = A
W = parameters["W" + str(l)]
b = parameters["b" + str(l)]
z = np.dot(W,A_pre) + b #计算z = wx + b
A = relu(z) #relu activation function
caches.append((W,b,z,A))
# calculate Lth layer
WL = parameters["W" + str(L)]
bL = parameters["b" + str(L)]
zL = np.dot(WL,A) + bL
AL = sigmoid(zL)
caches.append((WL,bL,zL,AL))
return AL, caches
#calculate cost function
def compute_cost(AL,Y):
"""
:param AL: 最后一层的激活值,即预测值,shape:(1,number of examples)
:param Y:真实值,shape:(1, number of examples)
:return:
"""
m = Y.shape[1]
# cost = -1.0/m * np.sum(Y*np.log(AL)+(1-Y)*np.log(1.0 - AL))#py中*是点乘
# cost = (1. / m) * (-np.dot(Y, np.log(AL).T) - np.dot(1 - Y, np.log(1 - AL).T)) #推荐用这个,上面那个容易出错
cost = 1. / m * np.nansum(np.multiply(-np.log(AL), Y) +
np.multiply(-np.log(1 - AL), 1 - Y))
#从数组的形状中删除单维条目,即把shape中为1的维度去掉,比如把[[[2]]]变成2
cost = np.squeeze(cost)
# print('=====================cost===================')
# print(cost)
return cost
# derivation of relu
def relu_backward(Z):
"""
:param Z: the input of activation
:return:
"""
dA = np.int64(Z > 0)
return dA
def backward_propagation(AL, Y, caches):
"""
Implement the backward propagation presented in figure 2.
Arguments:
X -- input dataset, of shape (input size, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
caches -- caches output from forward_propagation(),(W,b,z,pre_A)
Returns:
gradients -- A dictionary with the gradients with respect to dW,db
"""
m = Y.shape[1]
L = len(caches) - 1
# print("L: " + str(L))
#calculate the Lth layer gradients
prev_AL = caches[L-1][3]
dzL = 1./m * (AL - Y)
# print(dzL.shape)
# print(prev_AL.T.shape)
dWL = np.dot(dzL, prev_AL.T)
dbL = np.sum(dzL, axis=1, keepdims=True)
gradients = {"dW"+str(L):dWL, "db"+str(L):dbL}
#calculate from L-1 to 1 layer gradients
for l in reversed(range(1,L)): # L-1,L-3,....,1
post_W= caches[l+1][0] #要用后一层的W
dz = dzL #用后一层的dz
dal = np.dot(post_W.T, dz)
z = caches[l][2]#当前层的z
dzl = np.multiply(dal, relu_backward(z))
prev_A = caches[l-1][3]#前一层的A
dWl = np.dot(dzl, prev_A.T)
dbl = np.sum(dzl, axis=1, keepdims=True)
gradients["dW" + str(l)] = dWl
gradients["db" + str(l)] = dbl
dzL = dzl #更新dz
return gradients
def update_parameters(parameters, grads, learning_rate):
"""
:param parameters: dictionary, W,b
:param grads: dW,db
:param learning_rate: alpha
:return:
"""
L = len(parameters) // 2
for l in range(L):
parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l+1)]
parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l+1)]
return parameters
def random_mini_batches(X, Y, mini_batch_size = 64, seed=1):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (input size, number of examples)
Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)
mini_batch_size -- size of the mini-batches, integer
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""
np.random.seed(seed)
m = X.shape[1] # number of training examples
mini_batches = []
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1, m))
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = m // mini_batch_size # number of mini batches of size mini_batch_size in your partitionning
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[:, k * mini_batch_size: (k + 1) * mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size: (k + 1) * mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size: m]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size: m]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
def L_layer_model(X, Y, layer_dims, learning_rate, num_iterations, gradient_descent = 'bgd',mini_batch_size = 64):
"""
:param X:
:param Y:
:param layer_dims:list containing the input size and each layer size
:param learning_rate:
:param num_iterations:
:return:
parameters:final parameters:(W,b)
"""
m = Y.shape[1]
costs = []
# initialize parameters
parameters = initialize_parameters(layer_dims)
if gradient_descent =='bgd':
for i in range(0, num_iterations):
#foward propagation
AL,caches = forward_propagation(X, parameters)
# calculate the cost
cost = compute_cost(AL, Y)
if i % 1000 == 0:
print("Cost after iteration {}: {}".format(i, cost))
costs.append(cost)
#backward propagation
grads = backward_propagation(AL, Y, caches)
#update parameters
parameters = update_parameters(parameters, grads, learning_rate)
elif gradient_descent == 'sgd':
np.random.seed(3)
# 把数据集打乱,这个很重要
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1, m))
for i in range(0, num_iterations):
for j in range(0, m): # 每次训练一个样本
# Forward propagation
AL,caches = forward_propagation(shuffled_X[:, j].reshape(-1,1), parameters)
# Compute cost
cost = compute_cost(AL, shuffled_Y[:, j].reshape(1,1))
# Backward propagation
grads = backward_propagation(AL, shuffled_Y[:,j].reshape(1,1), caches)
# Update parameters.
parameters = update_parameters(parameters, grads, learning_rate)
if j % 20 == 0:
print("example size {}: {}".format(j, cost))
costs.append(cost)
elif gradient_descent == 'mini-batch':
seed = 0
for i in range(0, num_iterations):
# Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epoch
seed = seed + 1
minibatches = random_mini_batches(X, Y, mini_batch_size, seed)
for minibatch in minibatches:
# Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
# Forward propagation
AL, caches = forward_propagation(minibatch_X, parameters)
# Compute cost
cost = compute_cost(AL, minibatch_Y)
# Backward propagation
grads = backward_propagation(AL, minibatch_Y, caches)
parameters = update_parameters(parameters, grads, learning_rate)
if i % 100 == 0:
print("Cost after iteration {}: {}".format(i, cost))
costs.append(cost)
print('length of cost')
print(len(costs))
plt.clf()
plt.plot(costs)
plt.xlabel("iterations(hundred)") # 横坐标名字
plt.ylabel("cost") # 纵坐标名字
plt.show()
return parameters
#predict function
def predict(X_test,y_test,parameters):
"""
:param X:
:param y:
:param parameters:
:return:
"""
m = y_test.shape[1]
Y_prediction = np.zeros((1, m))
prob, caches = forward_propagation(X_test,parameters)
for i in range(prob.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
if prob[0, i] > 0.5:
Y_prediction[0, i] = 1
else:
Y_prediction[0, i] = 0
accuracy = 1- np.mean(np.abs(Y_prediction - y_test))
return accuracy
#DNN model
def DNN(X_train, y_train, X_test, y_test, layer_dims, learning_rate= 0.0006, num_iterations=30000, gradient_descent = 'bgd',mini_batch_size = 64):
parameters = L_layer_model(X_train, y_train, layer_dims, learning_rate, num_iterations,gradient_descent,mini_batch_size)
accuracy = predict(X_test,y_test,parameters)
return accuracy
if __name__ == "__main__":
X_data, y_data = load_breast_cancer(return_X_y=True)
X_train, X_test,y_train,y_test = train_test_split(X_data, y_data, train_size=0.8,random_state=28)
X_train = X_train.T
y_train = y_train.reshape(y_train.shape[0], -1).T
X_test = X_test.T
y_test = y_test.reshape(y_test.shape[0], -1).T
#use bgd
accuracy = DNN(X_train,y_train,X_test,y_test,[X_train.shape[0],10,5,1])
print(accuracy)
#use sgd
accuracy = DNN(X_train, y_train, X_test, y_test, [X_train.shape[0], 10, 5, 1],num_iterations=5, gradient_descent = 'sgd')
print(accuracy)
#mini-batch
accuracy = DNN(X_train, y_train, X_test, y_test, [X_train.shape[0], 10, 5, 1], num_iterations=10000,gradient_descent='mini-batch')
print(accuracy)