forked from xuanjihe/speech-emotion-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecsion.py
106 lines (93 loc) · 4.59 KB
/
decsion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 11 09:57:51 2018
@author: hxj
"""
import cPickle
import math
import numpy as np
import os
from sklearn.metrics import recall_score as recall
from sklearn.metrics import confusion_matrix as confusion
def read_data(dir):
f = open(dir,'rb')
best_valid_uw,best_valid_w,pred_test_w,test_acc_w,confusion_w,pred_test_uw,test_acc_uw,confusion_uw = cPickle.load(f)
f.close()
return best_valid_uw,best_valid_w,pred_test_w,test_acc_w,confusion_w,pred_test_uw,test_acc_uw,confusion_uw
def load_data():
f = open('./IEMOCAP7.pkl','rb')
train_data,train_label,test_data,test_label,valid_data,valid_label,Valid_label,Test_label,pernums_test,pernums_valid = cPickle.load(f)
return test_label
def softmax(x):
e_x = np.exp(x-np.max(x))
return e_x / e_x.sum(axis=0)
def decsion():
dir0 = './model_max0.pkl'
dir1 = './model_max1.pkl'
dir2 = './model_max2.pkl'
dir3 = './model_max3.pkl'
dir4 = './model_max4.pkl'
dir5 = './model_max5.pkl'
dir6 = './model_max6.pkl'
dir7 = './model_max7.pkl'
test_label = load_data()
best_valid_uw0,best_valid_w0,pred_test_w0,test_acc_w0,confusion_w0,pred_test_uw0,test_acc_uw0,confusion_uw0 = read_data(dir0)
best_valid_uw1,best_valid_w1,pred_test_w1,test_acc_w1,confusion_w1,pred_test_uw1,test_acc_uw1,confusion_uw1 = read_data(dir1)
best_valid_uw2,best_valid_w2,pred_test_w2,test_acc_w2,confusion_w2,pred_test_uw2,test_acc_uw2,confusion_uw2 = read_data(dir2)
best_valid_uw3,best_valid_w3,pred_test_w3,test_acc_w3,confusion_w3,pred_test_uw3,test_acc_uw3,confusion_uw3 = read_data(dir3)
best_valid_uw4,best_valid_w4,pred_test_w4,test_acc_w4,confusion_w4,pred_test_uw4,test_acc_uw4,confusion_uw4 = read_data(dir4)
best_valid_uw5,best_valid_w5,pred_test_w5,test_acc_w5,confusion_w5,pred_test_uw5,test_acc_uw5,confusion_uw5 = read_data(dir5)
best_valid_uw6,best_valid_w6,pred_test_w6,test_acc_w6,confusion_w6,pred_test_uw6,test_acc_uw6,confusion_uw6 = read_data(dir6)
best_valid_uw7,best_valid_w7,pred_test_w7,test_acc_w7,confusion_w7,pred_test_uw7,test_acc_uw7,confusion_uw7 = read_data(dir7)
print test_acc_uw0,test_acc_w0
print test_acc_uw1,test_acc_w1
print test_acc_uw2,test_acc_w2
print test_acc_uw3,test_acc_w3
print test_acc_uw4,test_acc_w4
print test_acc_uw7,test_acc_w7
print test_acc_uw6,test_acc_w6
print test_acc_uw5,test_acc_w5
#voting
size = pred_test_uw0[0]
Pred_w_vote = np.empty((size,8),dtype=np.int8)
Pred_w_vote[:,0] = np.argmax(pred_test_w0,1)
Pred_w_vote[:,1] = np.argmax(pred_test_w1,1)
Pred_w_vote[:,2] = np.argmax(pred_test_w2,1)
Pred_w_vote[:,3] = np.argmax(pred_test_w3,1)
Pred_w_vote[:,4] = np.argmax(pred_test_w4,1)
Pred_w_vote[:,5] = np.argmax(pred_test_w5,1)
Pred_w_vote[:,6] = np.argmax(pred_test_w6,1)
Pred_w_vote[:,7] = np.argmax(pred_test_w7,1)
# print Pred_w0.shape, Pred_w1.shape, Pred_w2.shape, Pred_w3.shape
# Pred_w_vote = np.concatenate((Pred_w0,Pred_w1,Pred_w2,Pred_w3),axis=1)
pred_w_vote = np.empty((Pred_w_vote.shape[0],1),dtype=np.int8)
for l in range(Pred_w_vote.shape[0]):
pred_w_vote[l] = np.argmax(np.bincount(Pred_w_vote[l]))
Pred_uw_vote = np.empty((size,8),dtype=np.int8)
Pred_uw_vote[:,0] = np.argmax(pred_test_uw0,1)
Pred_uw_vote[:,1] = np.argmax(pred_test_uw1,1)
Pred_uw_vote[:,2] = np.argmax(pred_test_uw2,1)
Pred_uw_vote[:,3] = np.argmax(pred_test_uw3,1)
Pred_uw_vote[:,4] = np.argmax(pred_test_uw4,1)
Pred_uw_vote[:,5] = np.argmax(pred_test_uw5,1)
Pred_uw_vote[:,6] = np.argmax(pred_test_uw6,1)
Pred_uw_vote[:,7] = np.argmax(pred_test_uw7,1)
# print Pred_uw0.shape, Pred_uw1.shape, Pred_uw2.shape, Pred_uw3.shape
# Pred_uw_vote = np.concatenate((Pred_uw0,Pred_uw1,Pred_uw2,Pred_uw3),axis=1)
pred_uw_vote = np.empty((Pred_uw_vote.shape[0],1),dtype=np.int8)
for l in range(Pred_uw_vote.shape[0]):
pred_uw_vote[l] = np.argmax(np.bincount(Pred_uw_vote[l]))
acc_uw_vote = recall(np.argmax(test_label, 1),pred_uw_vote,average='macro')
acc_w_vote = recall(np.argmax(test_label, 1),pred_w_vote,average='weighted')
conf_uw_vote = confusion(np.argmax(test_label, 1),pred_uw_vote)
conf_w_vote = confusion(np.argmax(test_label, 1),pred_w_vote)
print '*'*30
print "Voting UW Accuracy: %3.4g" %acc_uw_vote
print 'Confusion Matrix(UA):["ang","sad","hap","neu"]'
print conf_uw_vote
print "Voting W Accuracy: %3.4g" %acc_w_vote
print 'Confusion Matrix(A):["ang","sad","hap","neu"]'
print conf_w_vote
if __name__=='__main__':
decsion()