forked from xuanjihe/speech-emotion-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
147 lines (134 loc) · 7.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 1 19:05:03 2018
@author: hxj
"""
import numpy as np
import tensorflow as tf
import crnn
import cPickle
from sklearn.metrics import recall_score as recall
from sklearn.metrics import confusion_matrix as confusion
FLAGS = crnn.FLAGS
def load_data():
f = open(FLAGS.data_path,'rb')
train_data,train_label,test_data,test_label,valid_data,valid_label,Valid_label,\
Test_label,pernums_test,pernums_valid = cPickle.load(f)
return test_data,test_label,valid_data,valid_label,Valid_label,Test_label,pernums_test,pernums_valid
def dense_to_one_hot(labels_dense, num_classes):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def evaluate():
with tf.Graph().as_default() as g:
model = crnn.CRNN('test')
model._build_model()
#load training data
test_data,test_label,valid_data,valid_label,Valid_label,Test_label,pernums_test,pernums_valid = load_data()
test_label = dense_to_one_hot(test_label,4)
valid_label = dense_to_one_hot(valid_label,4)
Test_label = dense_to_one_hot(Test_label,4)
Valid_label = dense_to_one_hot(Valid_label,4)
test_size = test_data.shape[0]
valid_size = valid_data.shape[0]
tnum = pernums_test.shape[0]
vnum = pernums_valid.shape[0]
pred_test_uw = np.empty((tnum,4),dtype = np.float32)
pred_test_w = np.empty((tnum,4),dtype = np.float32)
valid_iter = divmod((valid_size),FLAGS.valid_batch_size)[0]
test_iter = divmod((test_size),FLAGS.test_batch_size)[0]
y_pred_valid = np.empty((valid_size,4),dtype=np.float32)
y_pred_test = np.empty((test_size,4),dtype=np.float32)
y_test = np.empty((tnum,4),dtype=np.float32)
y_valid = np.empty((vnum,4),dtype=np.float32)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels = model.labels, logits = model.logits)
variable_averages = tf.train.ExponentialMovingAverage(FLAGS.momentum)
variable_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variable_to_restore)
flag = False
best_valid_uw = 0
best_valid_w = 0
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess,ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
#for validation data
index = 0
cost_valid = 0
if(valid_size < FLAGS.valid_batch_size):
validate_feed = {model.inputs:valid_data,model.labels:Valid_label}
y_pred_valid,loss = sess.run([model.logits,cross_entropy],feed_dict = validate_feed)
cost_valid = cost_valid + np.sum(loss)
for v in range(valid_iter):
v_begin = v*FLAGS.valid_batch_size
v_end = (v+1)*FLAGS.valid_batch_size
if(v == valid_iter-1):
if(v_end < valid_size):
v_end = valid_size
validate_feed = {model.inputs:valid_data[v_begin:v_end],model.labels:Valid_label[v_begin:v_end]}
loss, y_pred_valid[v_begin:v_end,:] = sess.run([cross_entropy,model.logits],feed_dict = validate_feed)
cost_valid = cost_valid + np.sum(loss)
cost_valid = cost_valid/valid_size
for s in range(vnum):
y_valid[s,:] = np.max(y_pred_valid[index:index+pernums_valid[s],:],0)
index = index + pernums_valid[s]
valid_acc_uw = recall(np.argmax(valid_label,1),np.argmax(y_valid,1),average='macro')
valid_acc_w = recall(np.argmax(valid_label, 1),np.argmax(y_valid,1),average='weighted')
valid_conf = confusion(np.argmax(valid_label, 1),np.argmax(y_valid,1))
#for test set
index = 0
for t in range(test_iter):
t_begin = t*FLAGS.test_batch_size
t_end = (t+1)*FLAGS.test_batch_size
if(t == test_iter-1):
if(t_end < test_size):
t_end = test_size
#print t_begin,t_end,t,test_iter
test_feed = {model.inputs:test_data[t_begin:t_end],model.labels:Test_label[t_begin:t_end]}
y_pred_test[t_begin:t_end,:] = sess.run(model.logits, feed_dict = test_feed)
for s in range(tnum):
y_test[s,:] = np.max(y_pred_test[index:index+pernums_test[s],:],0)
index = index + pernums_test[s]
if valid_acc_uw > best_valid_uw:
best_valid_uw = valid_acc_uw
pred_test_uw = y_test
test_acc_uw = recall(np.argmax(test_label, 1),np.argmax(y_test,1),average='macro')
test_conf = confusion(np.argmax(test_label, 1),np.argmax(y_test,1))
confusion_uw = test_conf
flag = True
if valid_acc_w > best_valid_w:
best_valid_w = valid_acc_w
pred_test_w = y_test
test_acc_w = recall(np.argmax(test_label, 1),np.argmax(y_test,1),average='weighted')
test_conf = confusion(np.argmax(test_label, 1),np.argmax(y_test,1))
confusion_w = test_conf
flag = True
#export
print "*****************************************************************"
print global_step
print "Epoch: %s" %global_step
print "Valid cost: %2.3g" %cost_valid
print "Valid_UA: %3.4g" %valid_acc_uw
print "Valid_WA: %3.4g" %valid_acc_w
print "Best valid_UA: %3.4g" %best_valid_uw
print "Best valid_WA: %3.4g" %best_valid_w
print 'Valid Confusion Matrix:["ang","sad","hap","neu"]'
print valid_conf
print "Test_UA: %3.4g" %test_acc_uw
print "Test_WA: %3.4g" %test_acc_w
print 'Test Confusion Matrix:["ang","sad","hap","neu"]'
print confusion_uw
print "*****************************************************************"
if(flag):
f=open(FLAGS.pred_name,'wb')
cPickle.dump((best_valid_uw,best_valid_w,pred_test_w,test_acc_w,confusion_w,pred_test_uw,test_acc_uw,confusion_uw,),f)
f.close()
flag = False
if __name__=='__main__':
evaluate()