-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
276 lines (219 loc) · 8.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import argparse
import logging
import os
import pandas as pd
import torch
from jury import Jury, load_metric
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_kbit_training,
)
from radgraph import F1RadGraph
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from trl import ORPOConfig, SFTConfig
from datasets import Dataset
def get_dataset(train_filepath: str, val_filepath: str) -> list[Dataset]:
"""Prepares sft datasets.
Args:
train_filepath (str): Path to train csv file.
val_filepath (str): Path to val csv file.
Returns:
list[Dataset]: Train and val datasets.
"""
train_ds = Dataset.from_pandas(pd.read_csv(train_filepath, encoding="utf-8"))
val_ds = Dataset.from_pandas(pd.read_csv(val_filepath, encoding="utf-8"))
return [train_ds, val_ds]
def get_model_with_lora(args: argparse.Namespace) -> any:
"""Prepares the model.
Args:
args (argparse.Namespace): Arguments.
Returns:
any: Model.
"""
base_model = AutoModelForCausalLM.from_pretrained(
args.base_model_repo,
token=args.hf_token,
device_map="auto",
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
),
)
base_model.config.use_cache = False
peft_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
target_modules="all-linear",
bias=args.lora_bias,
task_type=args.lora_task_type,
)
base_model.gradient_checkpointing_enable()
base_model = prepare_model_for_kbit_training(base_model)
base_model = get_peft_model(base_model, peft_config)
base_model.print_trainable_parameters()
return base_model
def get_tokenizer(args: argparse.Namespace) -> any:
"""Prepares tokenizer.
Args:
args (argparse.Namespace): Arguments.
Returns:
any: Tokenizer.
"""
tokenizer = AutoTokenizer.from_pretrained(
args.base_model_repo,
token=args.hf_token,
add_bos_token=True,
add_eos_token=True,
)
tokenizer.pad_token = tokenizer.unk_token
tokenizer.padding_side = "right"
return tokenizer
def get_sft_training_args(args: argparse.Namespace) -> SFTConfig:
"""Prepares training arguments for sft.
Args:
args (argparse.Namespace): Arguments.
Returns:
SFTConfig: Configuration.
"""
return SFTConfig(
output_dir=args.output_dir,
num_train_epochs=args.num_train_epochs,
per_device_train_batch_size=args.per_device_train_batch_size,
per_device_eval_batch_size=args.per_device_eval_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
evaluation_strategy=args.eval_strategy,
optim=args.optim,
logging_steps=args.logging_steps,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
warmup_ratio=args.warmup_ratio,
lr_scheduler_type=args.lr_scheduler_type,
save_total_limit=args.save_total_limit,
load_best_model_at_end=args.load_best_model_at_end,
max_seq_length=args.max_seq_len,
dataset_text_field=args.dataset_text_field,
)
def get_orpo_training_args(args: argparse.Namespace) -> ORPOConfig:
"""Prepares training arguments for orpo.
Args:
args (argparse.Namespace): Arguments.
Returns:
ORPOConfig: Configuration.
"""
return ORPOConfig(
output_dir=args.output_dir,
num_train_epochs=args.num_train_epochs,
per_device_train_batch_size=args.per_device_train_batch_size,
per_device_eval_batch_size=args.per_device_eval_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
evaluation_strategy=args.eval_strategy,
optim=args.optim,
logging_steps=args.logging_steps,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
warmup_ratio=args.warmup_ratio,
lr_scheduler_type=args.lr_scheduler_type,
save_total_limit=args.save_total_limit,
load_best_model_at_end=args.load_best_model_at_end,
max_length=args.max_seq_len,
)
def gen_prompt_sft(row: pd.DataFrame) -> str:
"""Generates the sft prompt.
Args:
row (pd.DataFrame): Single row containing all the fields.
Returns:
str: Prompt.
"""
prompt: str = (
"###INSTRUCTION:\n"
+ "You are an expert radiologist. Generate FINDINGS section not exceeding 100 words by understanding details based on the given corresponding sections below.\n"
+ "PAST-REPORTS:\n"
+ f"{row['similar_past_reports']}\n"
+ "CONTEXTUAL-TAGS:\n"
+ f"{row['tags']}\n"
+ "IMPRESSIONS:\n"
+ f"{row['impression']}\n"
+ "###RESPONSE:\n"
)
return prompt
def gen_prompt_po(row: pd.DataFrame) -> str:
"""Generates the po prompt.
Args:
row (pd.DataFrame): Single row containing all the fields.
Returns:
str: Prompt.
"""
prompt: str = (
"###INSTRUCTION:\n"
+ "You are an expert radiologist. Enhance and improve PREDICTED-FINDINGS section not exceeding 100 words by understanding details based on the given corresponding sections below.\n"
+ "PAST-REPORTS:\n"
+ f"{row['similar_past_reports']}\n"
+ "CONTEXTUAL-TAGS:\n"
+ f"{row['tags']}\n"
+ "IMPRESSIONS:\n"
+ f"{row['impression']}\n"
+ "PREDICTED-FINDINGS:\n"
+ f"{row['prediction_fg']}\n"
+ "###RESPONSE:\n"
)
return prompt
def get_logger(logging_dir: str) -> logging.Logger:
"""Builds logger.
Args:
logging_dir (str): Path to logging directory.
Returns:
logging.Logger: Logger.
"""
if not os.path.isdir(logging_dir):
os.makedirs(logging_dir)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(message)s")
file_handler = logging.FileHandler(f"{logging_dir}/exp.log", mode="w")
stream_handler = logging.StreamHandler()
file_handler.setFormatter(formatter)
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
return logger
def calculate_metrics(
predictions: list[list[str]], references: list[list[str]], logger: logging.Logger
) -> None:
"""Computes NLG metrics and F1-RadGraph metrics.
Args:
predictions (list[list[str]]): Containing all the predicted sentences.
references (list[list[str]]): Containing all the ground truth sentences.
logger (logging.Logger): Logger.
"""
# NLG ----------------------------------------
metrics = [
load_metric("bleu", resulting_name="bleu_1", compute_kwargs={"max_order": 1}),
load_metric("bleu", resulting_name="bleu_2", compute_kwargs={"max_order": 2}),
load_metric("bleu", resulting_name="bleu_3", compute_kwargs={"max_order": 3}),
load_metric("bleu", resulting_name="bleu_4", compute_kwargs={"max_order": 4}),
load_metric("meteor", resulting_name="meteor"),
load_metric("rouge", resulting_name="rouge"),
]
scorer = Jury(metrics=metrics, run_concurrent=False)
scores = scorer(predictions=predictions, references=references)
logger.info(f"BLEU-1: {scores['bleu_1']['score']:.5f}")
logger.info(f"BLEU-2: {scores['bleu_2']['score']:.5f}")
logger.info(f"BLEU-3: {scores['bleu_3']['score']:.5f}")
logger.info(f"BLEU-4: {scores['bleu_4']['score']:.5f}")
logger.info(f"METEOR: {scores['meteor']['score']:.5f}")
logger.info(f"ROUGE-L: {scores['rouge']['rougeL']:.5f}")
# F1-RadGraph ----------------------------------------
predictions = sum(predictions, [])
references = sum(references, [])
f1radgraph = F1RadGraph(reward_level="all")
mean_reward, _, _, _ = f1radgraph(hyps=predictions, refs=references)
logger.info(f"Simple, partial, complete scores: {mean_reward}")