-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcgan.py
95 lines (84 loc) · 3.01 KB
/
dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from keras.datasets import mnist
from keras.layers import Dense, Reshape, Conv2D, Flatten, Input, UpSampling2D
from keras import Sequential, Model
from keras.optimizers import Adam
import numpy as np
import matplotlib.pyplot as plt
import keras.backend as K
K.clear_session()
input_size = 100 # 100 random sayi
optimizer = Adam(lr=0.0002)
###
generator = Sequential()
generator.add(Dense(784, activation='linear', input_dim=input_size))
generator.add(Reshape([7, 7, 16]))
generator.add(UpSampling2D())
generator.add(Conv2D(32, kernel_size=5, strides=1, padding='same'))
generator.add(UpSampling2D())
generator.add(Conv2D(1, kernel_size=5, strides=1,
padding='same', activation='tanh'))
generator.summary()
discriminator = Sequential()
discriminator.add(Conv2D(64, kernel_size=5, strides=2,
padding='same', input_shape=(28, 28, 1)))
discriminator.add(Conv2D(32, kernel_size=5, strides=2, padding='same'))
discriminator.add(Flatten())
discriminator.add(Dense(32, activation='relu'))
discriminator.add(Dense(1, activation='sigmoid'))
discriminator.compile(loss="binary_crossentropy", optimizer=optimizer)
discriminator.summary()
###
discriminator.trainable = False
x = Input((input_size,))
out_generator = generator(x)
out_discriminator = discriminator(out_generator)
gan = Model(inputs=(x,), outputs=(out_discriminator))
gan.compile(loss="binary_crossentropy", optimizer=optimizer)
gan.summary()
def generateRandomData(sizey, sizex):
return np.random.normal(0, 1, (sizey, sizex))
def showResults(gen):
noise = generateRandomData(32, input_size)
images = gen.predict(noise)
print images.shape
print images[0].dtype
plt.figure(figsize=(4, 8))
for i in range(32):
plt.subplot(4, 8, i + 1)
im = np.reshape(images[i], (1, -1))
im = (np.reshape(im, [28, 28]) + 1) * 255
im = np.clip(im, 0, 255)
im = np.uint8(im)
plt.imshow(im, cmap='gray')
plt.show()
(xtrain, _), (xtest, _) = mnist.load_data()
###
xtrain = np.reshape(xtrain, [-1, 28, 28, 1])
xtest = np.reshape(xtest, [-1, 28, 28, 1])
###
xtrain = (xtrain.astype(np.float32) - 127.5) / 127.5
# plt.imshow(np.reshape(xtrain[0], [28, 28]), cmap="gray")
# plt.show()
epochs = 20
batch_size = 128
eval_size = 32
print xtrain.shape, xtest.shape
for e in range(epochs):
for i in range(xtrain.shape[0] / batch_size):
# gercek veriyi al
xreal = xtrain[(i) * batch_size:(i + 1) * batch_size]
# fake veriyi olustur
noise = generateRandomData(batch_size, input_size)
# fake ciktiyi al
xfake = generator.predict_on_batch(noise)
# gercek ile egit
discriminator.trainable = True
discriminator.train_on_batch(xreal, np.array([0.9] * batch_size))
# fake ile egit
discriminator.train_on_batch(xfake, np.array([0.] * batch_size))
# gan i egit
discriminator.trainable = False
gan.train_on_batch(noise, np.array([1.] * batch_size))
# ekrana yazdir
if (e + 1) % 4 == 0:
showResults(generator)