-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvanillagan.py
82 lines (72 loc) · 2.71 KB
/
vanillagan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from keras.datasets import mnist
(xtrain, _), (xtest,_) = mnist.load_data()
# mnist verisini al
from keras.layers import Dense, Conv2DTranspose, Reshape, Conv2D,Flatten, BatchNormalization, Input,UpSampling2D,Dropout
from keras import Sequential,Model
from keras.optimizers import Adam
from keras.layers.advanced_activations import LeakyReLU
import numpy as np
import matplotlib.pyplot as plt
import keras.backend as K
from keras import initializers
K.clear_session()
input_size = 100 # 100 random sayi
optimizer = Adam(lr=0.0002)
generator = Sequential()
generator.add(Dense(256,activation='relu',input_dim=input_size))
generator.add(Dense(512,activation='relu'))
generator.add(Dense(784,activation='tanh'))
discriminator = Sequential()
discriminator.add(Dense(512,activation='relu',input_dim=784))
discriminator.add(Dense(256,activation='relu'))
discriminator.add(Dense(1,activation='sigmoid'))
discriminator.compile(loss="binary_crossentropy", optimizer=optimizer)
discriminator.trainable = False
x = Input((input_size,))
out_generator = generator(x)
out_discriminator = discriminator(out_generator)
gan = Model(inputs=(x,), outputs=(out_discriminator))
gan.compile(loss="binary_crossentropy", optimizer=optimizer)
gan.summary()
def generateRandomData(sizey, sizex):
""" Can egrisi dagilimina sahip veri olustur """
return np.random.normal(0,1,(sizey,sizex))
def showResults(gen):
noise = generateRandomData(32,input_size)
images = gen.predict(noise)
plt.figure(figsize=(4,8))
for i in range(32):
plt.subplot(4,8,i+1)
im = np.reshape(images[i],(1,-1))
im = (np.reshape(im,[28,28])+1) *255
im = np.clip(im,0,255)
im = np.uint8(im)
plt.imshow(im, cmap='gray')
plt.show()
epochs = 20
batch_size = 128
eval_size = 32
xtrain = np.reshape(xtrain,[xtrain.shape[0],-1])
xtest = np.reshape(xtest,[xtest.shape[0],-1])
xtrain = (xtrain.astype(np.float32) - 127.5)/127.5
plt.imshow(np.reshape(xtrain[0],[28,28] ),cmap="gray")
plt.show()
for e in range(epochs):
for i in range(xtrain.shape[0]/batch_size):
# gercek veriyi al
xreal = xtrain[(i) * batch_size:(i+1)* batch_size]
# fake veriyi olustur
noise = generateRandomData(batch_size, input_size)
# fake ciktiyi al
xfake = generator.predict_on_batch(noise)
# gercek ile egit
discriminator.trainable = True
discriminator.train_on_batch(xreal, np.array([0.9]*batch_size))
# fake ile egit
discriminator.train_on_batch(xfake, np.array([0.]*batch_size))
# gan i egit
discriminator.trainable = False
gan.train_on_batch(noise, np.array([1.]*batch_size))
# ekrana yazdir
if (e+1) % 4 == 0:
showResults(generator)