forked from jaketae/deep-malware-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
188 lines (162 loc) · 5.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
from sklearn.metrics import auc, confusion_matrix, roc_curve
from torch import optim
from torch.nn.functional import sigmoid
from tqdm.auto import tqdm
def set_seed(seed):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def count_params(model, trainable_only=True):
if trainable_only:
return sum(p.numel() for p in model.parameters() if p.requires_grad)
return sum(p.numel() for p in model.parameters())
def set_plt_style():
plt.rcParams.update(
{"text.usetex": True, "font.family": "serif", "font.serif": ["cm"],}
)
def plot_confusion_matrix(model, test_loader, save_title, device, normalize="all"):
y_true, y_pred = predict(model, test_loader, device)
conf_mat = confusion_matrix(y_true, y_pred, normalize=normalize)
axis_labels = ("Benign", "Malware")
df = pd.DataFrame(conf_mat, index=axis_labels, columns=axis_labels)
plot = sns.heatmap(df, annot=True, cmap="Blues")
plot.figure.savefig(os.path.join("imgs", f"{save_title}_conf_mat.png"), dpi=300)
plt.close(plot.figure)
def plot_roc_curve(models, test_loader, save_title, device):
fig, ax = plt.subplots()
ax.grid(linestyle="--")
ax.set_xlabel("False Positive Rate")
ax.set_ylabel("True Positive Rate")
if isinstance(models, dict):
for label, model in models.items():
fpr, tpr, auc_score = _rates_auc(model, test_loader, device)
ax.plot(fpr, tpr, label=f"{label} ({auc_score:.2f})")
else:
fpr, tpr, auc_score = _rates_auc(models, test_loader, device)
ax.plot(fp, tpr, label=f"{save_title} ({auc_score:.2f})")
ax.plot([0, 1], [0, 1], linestyle="--", label="Chance (0.5)")
ax.legend(loc="best")
fig.savefig(os.path.join("imgs", f"{save_title}_roc.png"), dpi=300)
plt.close(fig)
def _rates_auc(model, test_loader, device):
y_true, y_pred = predict(model, test_loader, device, apply_sigmoid=True)
fpr, tpr, _ = metrics.roc_curve(y_true, y_pred)
auc_score = auc(fpr, tpr)
return fpr, tpr, auc_score
@torch.no_grad()
def predict(model, data_loader, device, apply_sigmoid=False, to_numpy=True):
model.eval()
y_true = []
y_pred = []
for inputs, labels in tqdm(data_loader, leave=False):
inputs = inputs.to(device)
outputs = model(inputs)
y_true.append(labels)
y_pred.append(outputs)
y_true = torch.cat(y_true).to(int)
if apply_sigmoid:
y_pred = sigmoid(torch.cat(y_pred))
else:
y_pred = (torch.cat(y_pred) > 0).to(int)
if to_numpy:
y_true = y_true.cpu().numpy()
y_pred = y_pred.cpu().numpy()
assert y_true.shape == y_pred.shape
model.train()
return y_true, y_pred
def get_accuracy(model, data_loader, device):
y_true, y_pred = predict(model, data_loader, device, to_numpy=False)
return 100 * (y_true == y_pred).to(float).mean().item()
def plot_train_history(train_loss_history, val_loss_history, save_title):
fig, ax = plt.subplots()
time_ = range(len(train_loss_history))
ax.set_xlabel("Epochs")
ax.set_ylabel("BCE Loss")
ax.grid(linestyle="--")
ax.plot(time_, train_loss_history, color="blue", label="train loss")
ax.plot(time_, val_loss_history, color="red", label="val loss")
ax.legend(loc="best")
fig.savefig(os.path.join("figures", f"{save_title}_train_history.png"), dpi=300)
plt.close(fig)
def train(
model,
train_loader,
val_loader,
device,
save_title,
lr=0.001,
patience=3,
num_epochs=50,
verbose=True,
):
train_loss_history = []
val_loss_history = []
criterion = torch.nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
monitor = EarlyStopMonitor(patience)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, factor=0.5, patience=patience
)
for epoch in range(1, num_epochs + 1):
model.train()
train_loss = run_epoch(model, train_loader, device, criterion, optimizer)
train_loss_history.append(train_loss)
model.eval()
with torch.no_grad():
val_loss = run_epoch(model, val_loader, device, criterion)
val_loss_history.append(val_loss)
if verbose:
tqdm.write(
f"Epoch [{epoch}/{num_epochs}], "
f"Train Loss: {train_loss:.4f}, "
f"Val Loss: {val_loss:.4f}"
)
scheduler.step(val_loss)
if monitor.step(val_loss):
break
if len(val_loss_history) == 1 or val_loss < val_loss_history[-2]:
torch.save(
model.state_dict(), os.path.join("checkpoints", f"{save_title}.pt"),
)
plot_train_history(train_loss_history, val_loss_history, save_title)
def run_epoch(model, data_loader, device, criterion, optimizer=None):
total_loss = 0
for inputs, labels in tqdm(data_loader, leave=False):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
if optimizer:
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(data_loader)
class EarlyStopMonitor:
def __init__(self, patience, mode="min"):
assert mode in {"min", "max"}, "`mode` must be one of 'min' or 'max'"
self.log = []
self.mode = mode
self.count = 0
self.patience = patience
def step(self, metric):
if not self.log:
self.log.append(metric)
return False
flag = metric > self.log[-1]
if flag == (self.mode == "min"):
self.count += 1
else:
self.count = 0
self.log.append(metric)
return self.count > self.patience