-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
74 lines (64 loc) · 2.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import sys
import tensorflow as tf
import utils
import nnet
FLAGS = tf.app.flags.FLAGS
# Data
tf.app.flags.DEFINE_string('dataset', './data',
"""Path to data.""")
tf.app.flags.DEFINE_string('data_list', './data/list.pkl',
"""Cached list of data.""")
tf.app.flags.DEFINE_string('mean_path', './data/mean.png',
"""Path to mean of data.""")
tf.app.flags.DEFINE_string('sample_path', './samples',
"""Path to save samples in.""")
# Training
tf.app.flags.DEFINE_integer('batch_size', 20,
"""Number of videos to process in a batch.""")
tf.app.flags.DEFINE_integer('sample_size', 20,
"""Number of videos to sample and save in a batch.""")
tf.app.flags.DEFINE_integer('train_epochs', 10**10,
"""Number of training epochs.""")
tf.app.flags.DEFINE_float('lrate_d', 1e-5,
"""Learning rate for discriminator.""")
tf.app.flags.DEFINE_float('lrate_g', 1e-4,
"""Learning rate for generator.""")
tf.app.flags.DEFINE_float('beta1_d', 0.5,
"""beta1 for discriminator.""")
tf.app.flags.DEFINE_float('beta1_g', 0.5,
"""beta1 for generator.""")
# Architecture
tf.app.flags.DEFINE_integer('z_dim', 100,
"""Dimension of initial noise vector.""")
tf.app.flags.DEFINE_integer('gf_dim', 64,
"""Conv kernel size of G.""")
tf.app.flags.DEFINE_integer('df_dim', 64,
"""Conv kernel size of D.""")
tf.app.flags.DEFINE_integer('c_dim', 3,
"""Number of input channels.""")
tf.app.flags.DEFINE_float('mask_penalty', 0.1,
"""Lambda for L1 regularizer of mask.""")
# Model saving
tf.app.flags.DEFINE_string('checkpoint_dir', './checkpoints',
"""Path to checkpoint models.""")
tf.app.flags.DEFINE_integer('checkpoint_time', 30*60,
"""Time to save checkpoints in.""")
tf.app.flags.DEFINE_integer('sampler_time', 30*60,
"""Time to save samples in.""")
tf.app.flags.DEFINE_integer('print_time', 60,
"""Time to print loss.""")
tf.app.flags.DEFINE_boolean('calc_mean', False,
"""Whether or not to calculate mean.""")
def main(_):
data = utils.Dataset(FLAGS)
model = nnet.videoGan(flags=FLAGS,
batch_size=FLAGS.batch_size,
sample_size = FLAGS.sample_size,
z_dim=FLAGS.z_dim,
gf_dim=FLAGS.gf_dim,
df_dim=FLAGS.df_dim,
c_dim=FLAGS.c_dim,
mask_penalty=FLAGS.mask_penalty)
model.train(data)
if __name__ == '__main__':
tf.app.run()