-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain-local.py
276 lines (240 loc) · 10.3 KB
/
main-local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# This is a sample Python script.
import pickle
import time
import logging
import os
from datetime import datetime
import torch
import torchvision.models as models
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision.io import read_image
from torchvision import transforms
import numpy as np
from torch.utils.data import random_split
# - own
from datasetmetareader import get_dataset
# -- configure logger
logging.getLogger().setLevel(logging.INFO)
# -- config
IMG_WIDTH = 64
IMG_HEIGHT = 64
INPUT_SIZE = (IMG_HEIGHT, IMG_WIDTH, 3)
OUTPUT_SIZE = None # let's get count of classes from Data
BATCH_SIZE = 25
EPOCHS = 1
DROUPOUT_RATE = 0.2
# OVERSAMPLING_ENABLED = False
# CLASS_WEIGHT_ENABLED = False
FLOAT16_FLAG = True
print("batch_size: " + str(BATCH_SIZE))
# - Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# - Set the device globally
torch.set_default_device(device)
# If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256"
if device == "cuda":
GPU_SCORE = torch.cuda.get_device_capability()
# GPU_SCORE = (8, 0)
# optimization - perform faster matrix multiplications
if GPU_SCORE >= (8, 0):
print(f"[INFO] Using GPU with score: {GPU_SCORE}, enabling TensorFloat32 (TF32) computing (faster on new GPUs)")
torch.backends.cuda.matmul.allow_tf32 = True
else:
print(f"[INFO] Using GPU with score: {GPU_SCORE}, TensorFloat32 (TF32) not available, to use it you need a GPU with score >= (8, 0)")
torch.backends.cuda.matmul.allow_tf32 = False
default_float_dtype = torch.get_default_dtype()
if FLOAT16_FLAG:
default_float_dtype = torch.float16
class LandmarkDataset(Dataset):
def __init__(self, paths, labels, transform=None, target_transform=None, cache_path=None):
"""
:cache_path - set if you want to create a cache or to load images from a cache
"""
self.paths = paths
self.labels = labels
self.transform = transform
self.target_transform = target_transform
self.cache_path = cache_path
if cache_path is not None:
self.save_cached_images(cache_path)
def __len__(self):
return len(self.labels)
def save_cached_images(self, save_path):
if not os.path.exists(save_path):
raise Exception("no path")
l = self.__len__()
done_file_path = os.path.join(save_path, ".done-"+str(l))
# - check if already saved
# - TODO: chack that there is no other .done-???
if os.path.exists(done_file_path):
logging.info(f"Image's cache already exist, we will use {save_path}.")
return
logging.info(f"Saving image to cache folder {save_path}.")
# - save files
for i, img_path in enumerate(self.paths):
if i % 10000 == 9999:
logging.info(f"{i}, of, {l}") # print steps
image = read_image(img_path)
if self.transform:
image = self.transform(image)
fp = os.path.join(save_path, str(i) + ".pkl")
# torch.save(image, fp) # _use_new_zipfile_serialization = False
with open(fp, 'wb') as f:
pickle.dump(image, f)
# - create file ".done-9999" to mark directory as full
open(done_file_path, 'a').close()
# torchvision.io.image.write_png(image,fp)
self.cache_path = save_path
def __getitem__(self, idx):
if self.cache_path:
# print("here", idx)
# for i, img_path in enumerate(self.paths):
fp = os.path.join(self.cache_path, str(idx) + ".pkl")
# image = torch.load(fp) # , weights_only=True
with open(fp, 'rb') as f:
image = pickle.load(f)
# image = torchvision.io.image.read_image(fp)
else:
image = read_image(self.paths[idx])
if self.transform:
image = self.transform(image)
image = image.to(dtype=default_float_dtype).div(255)
label = self.labels[idx]
if self.target_transform:
label = self.target_transform(label)
# return image, label
return image.to(device), torch.tensor(label, dtype=torch.long).to(device)
def train_one_epoch(epoch_index, training_loader, optimizer, model, loss_fn, tb_writer=None):
""" training_loader is (inputs, labels) """
model.train(True)
running_loss = 0.
# last_loss = 0.
avg_loss = 0.
correct = 0
total = 0
start_time = time.time()
for i, data in enumerate(training_loader):
inputs, labels = data
optimizer.zero_grad()
# -- forward, backward + optimize
outputs = model(inputs)
loss = loss_fn(outputs, labels)
loss.backward()
optimizer.step()
# -- collect statistics
# print("outputs", outputs.data)
# print("outputs2", outputs.argmax(axis=1))
# print("labels size", labels.size(0))
total += labels.size(0)
correct += (outputs.argmax(axis=1) == labels).sum().item() # False, True -> count True, -> extract number
# print("labels", labels)
# print("total", total, "correct", correct)
running_loss += loss.item()
if i % 100 == 99:
avg_loss = running_loss / i
# - overwrite output:
print(f'Batch {i + 1} loss: {round(avg_loss,2)}, accuracy raw: {correct / total}, time {time.time() - start_time} s')
return avg_loss
def validate(model, validation_loader, loss_fn):
model.eval()
# ---- validate with validation_loader ----
running_vloss = 0.0
correct = 0
total = 0
# - Disable gradient computation and reduce memory consumption.
with torch.no_grad():
for i, vdata in enumerate(validation_loader):
vinputs, vlabels = vdata
voutputs = model(vinputs)
vloss = loss_fn(voutputs, vlabels)
running_vloss += vloss
total += vlabels.size(0)
correct += (voutputs.argmax(axis=1) == vlabels).sum().item() # False, True -> count True, -> extract number
return running_vloss / (i + 1), round(100 * correct / total, 2)
def train_valid(model, training_loader, validation_loader, loss_fn, epochs):
# timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') # for saving checkpoints
epoch_number = 0
# optimizer = torch.optim.Adam(model.parameters())
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
for epoch in range(epochs):
print('EPOCH {}:'.format(epoch_number + 1))
# ---- train ----
avg_loss = train_one_epoch(epoch_number,
training_loader=training_loader,
optimizer=optimizer,
model=model,
loss_fn=loss_fn,
tb_writer=None)
avg_vloss, acc = validate(model, validation_loader, loss_fn)
print('Loss after epoch: train {} valid {} val_accuracy {}'.format(avg_loss, avg_vloss, acc))
# if avg_vloss < best_vloss:
# best_vloss = avg_vloss
# -- save checkpoint
# model_path = 'model_{}_{}'.format(timestamp, epoch_number)
# torch.save(model.state_dict(), model_path) # save the model's state
epoch_number += 1
def create_model(classes) -> torch.nn.Module:
resnet = models.resnet50(weights=None)
num_ftrs = resnet.fc.in_features
resnet.fc = torch.nn.Linear(num_ftrs, out_features=classes)
if FLOAT16_FLAG:
resnet = resnet.half()
return resnet
def main():
logging.info("main")
x_train, x_valid, y_train, y_valid, OUTPUT_SIZE = get_dataset()
print("classes: " + str(len(np.unique(y_train))))
data_transform = transforms.Compose([
transforms.RandomResizedCrop((IMG_HEIGHT, IMG_WIDTH), antialias=None),
# transforms.ToTensor() # to [0.0, 1.0]
])
# -- save and load dataset --
# - normal:
# train_dataset = LandmarkDataset(x_train, y_train, transform=data_transform)
# - with cache:
CACHE_DIR = "/tmp/c"
# os.rmdir(CACHE_DIR) # if saving was not completed
if not os.path.exists(CACHE_DIR):
try:
os.mkdir(CACHE_DIR)
except:
pass # noqa
train_dataset = LandmarkDataset(x_train, y_train, transform=data_transform, cache_path=CACHE_DIR)
valid_dataset: Dataset = LandmarkDataset(x_valid, y_valid, transform=data_transform)
# train_val, _ = random_split(range(10), [0.1, 0.9], generator=torch.Generator(device=device).manual_seed(42))
# -- DataLoader
# from torch.utils.data.dataloader import default_collate
generator = torch.Generator(device=device)
train_loader: DataLoader = DataLoader(train_dataset,
shuffle=True, batch_size=BATCH_SIZE,
generator=generator) # , pin_memory_device=device, pin_memory=True
# collate_fn=lambda x: (default_collate(x[0]).to(device), default_collate(torch.from_numpy(x[1])).to(device))
# train_val_loader: DataLoader = DataLoader(train_val, generator=generator) # validate inside epoch
valid_loader: DataLoader = DataLoader(valid_dataset, generator=generator)
# -- train
model: torch.nn.Module = create_model(OUTPUT_SIZE) # load model definition
print(model)
# torch.cuda.empty_cache() # optimization - no change
train_valid(model, training_loader=train_loader,
validation_loader=valid_loader,
loss_fn=torch.nn.CrossEntropyLoss(),
epochs=EPOCHS)
# -- save, load
PATH = os.path.join(os.getcwd(), 'savedmodel')
torch.save(model.state_dict(), PATH)
model = create_model(OUTPUT_SIZE)
model.load_state_dict(torch.load(PATH))
# -- inference
model.eval()
img, lab = next(iter(DataLoader(valid_dataset, shuffle=True, batch_size=1
,generator=generator
))) # get random item
print("lab", lab)
result: torch.Tensor = model(img)
print("result", np.argmax(result.cpu().detach().numpy()))
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
main()
# See PyCharm help at https://www.jetbrains.com/help/pycharm/