-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkcm_clustering.py
226 lines (173 loc) · 7.18 KB
/
kcm_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import random, math, copy
import matplotlib.pyplot as plt
class Point:
def __init__(self, values):
self.values = values # values for each point
self.unit_intervals = [] # unit intervals for this point in regards to each center
self.label = None # label that shows each point belongs to which cluster
class KCM:
def __init__(self, points, min_clusters_num, max_clusters_num, m, convergence_limit=0.005):
self.points = points
self.min_clusters_num = min_clusters_num
self.max_clusters_num = max_clusters_num
self.centers = []
self.m = m
self.convergence_limit = convergence_limit
self.clusters = []
# simply generating random centers
def init_centers(self, c, dim):
ret_centers = []
for _ in range(c):
rnd = [random.random() for i in range(dim)]
ret_centers.append(rnd)
return ret_centers
# resetting unit intervals
def clear_unit_intervals(self, c):
for point in self.points:
point.unit_intervals = [0] * c
# initializing our environment for running KCM with the new number of centers
def init_single_kcm(self, c):
self.centers = self.init_centers(c, len(self.points[0].values))
self.clear_unit_intervals(c)
# calculating the distance between two points
def calculate_distance(self, a, b):
sum_square = 0
for i in range(len(a)):
sum_square += (a[i] - b[i])**2
return math.sqrt(sum_square)
# calculating the u_ik for X_k's unit interval in regards to the center V_i
def update_uik(self, i, k, c):
vi = self.centers[i]
xk = self.points[k].values
uik = 0
term1 = self.calculate_distance(xk, vi)
for j in range(c):
vj = self.centers[j]
term2 = self.calculate_distance(xk, vj)
uik += (term1 / term2) ** (2/(self.m - 1))
uik = 1/uik
return uik
# updating center vi
def update_vi(self, i):
vi = self.centers[i]
n = len(self.points)
m = self.m
sigma1 = [0] * len(vi)
sigma2 = 0
# calculating the denominator of vi calculation formula
for k in range(n):
uik = self.points[k].unit_intervals[i]
sigma2 += uik**m
# calculating the numerator of vi calculation formula
for k in range(n):
uik = self.points[k].unit_intervals[i]
xk = self.points[k].values
for ind in range(len(vi)):
sigma1[ind] += (uik**m)*xk[ind]
# calculating vi
for i in range(len(vi)):
vi[i] = sigma1[i] / sigma2
return vi
# checking if all the coordinates of the new center have converged
def is_converged(self, old_centers, new_centers):
limit = self.convergence_limit
for i in range(len(new_centers)):
for j in range(len(new_centers[0])):
if abs(new_centers[i][j] - old_centers[i][j]) > limit:
return False
return True
# running the KCM algorithm with the given c and finding the centers
def run_cluster(self, c):
self.init_single_kcm(c)
# while centers are not converged, run the algorithm
while True:
old_centers = copy.deepcopy(self.centers)
# updating u_ik values
for k in range(len(self.points)):
for i in range(c):
self.points[k].unit_intervals[i] = self.update_uik(i, k, c)
# updating v_i values (centers)
for i in range(c):
self.centers[i] = self.update_vi(i)
if self.is_converged(old_centers, self.centers):
break
return self.centers
# calculating the Entropy for the given points and centers
def calculate_entropy(self):
entropy = 0
c = len(self.centers)
for i in range(len(self.centers)):
for k in range(len(self.points)):
uik = self.points[k].unit_intervals[i]
entropy = entropy - uik*math.log(uik)
return entropy/math.log(c)
# label each point to show the cluster it belongs to
def label_points(self):
for point in self.points:
max_index = 0
for i in range(len(point.unit_intervals)):
if point.unit_intervals[i] > point.unit_intervals[max_index]:
max_index = i
point.label = max_index
def build_clusters(self):
self.label_points()
self.clusters = [[] for i in range(len(self.centers))]
for point in self.points:
self.clusters[point.label].append(point)
# printing the centers
def print_centers(self):
centers = self.centers
for i in range(len(centers)):
pr = "Center {}: ".format(i+1)
for j in range(len(centers[i])):
pr += str(centers[i][j]) + ', '
pr = pr[:-1]
print(pr)
# running the KCM algorithm for different number of centers and finding the appropriate one
def kcm_cluster(self):
entropies = []
all_points = []
all_centers = []
all_clusters = []
for i in range(self.min_clusters_num, self.max_clusters_num + 1):
self.run_cluster(i)
entropy = self.calculate_entropy()
entropies.append(entropy)
print("Number of centers: {}, Entropy: {}".format(i, entropy))
self.build_clusters()
all_points.append(copy.deepcopy(self.points))
all_centers.append(copy.deepcopy(self.centers))
all_clusters.append(copy.deepcopy(self.clusters))
min_index = 0
for i in range(len(entropies)):
if entropies[i] < entropies[min_index]:
min_index = i
self.points = all_points[min_index]
self.centers = all_centers[min_index]
self.clusters = all_clusters[min_index]
print("\nBest number of centers:", min_index + self.min_clusters_num)
self.print_centers()
cost = self.calculate_cost()
print("Cost:", cost)
# plot the result
def kcm_plot(self):
colors = ["green","blue","yellow","pink","black","orange","purple","beige","brown","gray","cyan","magenta"]
centers_x = [c[0] for c in self.centers]
centers_y = [c[1] for c in self.centers]
for i in range(len(self.clusters)):
x_values = [y.values[0] for y in [x for x in self.clusters[i]]]
y_values = [y.values[1] for y in [x for x in self.clusters[i]]]
plt.scatter(x_values, y_values, c=colors[i])
plt.scatter(centers_x, centers_y, c="red", s=40)
plt.show()
# calculating the cost
def calculate_cost(self):
cost = 0
for j in range(len(self.points)):
for i in range(len(self.centers)):
uij = self.points[j].unit_intervals[i]
xj = self.points[j].values
vi = self.centers[i]
square_distance = self.calculate_distance(xj, vi) ** 2
cost += (uij**self.m) * square_distance
return cost