-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_with_flask.py
139 lines (111 loc) · 4.49 KB
/
main_with_flask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import cv2
import numpy as np
import pandas as pd
import time
from flask import Flask, request, render_template, Response, send_file, session
from easyocr import Reader
import camera
from csv import writer
import os
import warnings
import tablib
app=Flask(__name__)
@app.route('/')
def home1():
return render_template('html_main.html')
# Load Yolo
net = cv2.dnn.readNet("weights/yolov4.weights", "cfg/yolov4.cfg")
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
#Loading camera
cap = cv2.VideoCapture('video_test.mp4')
#cap.get(cv2.CAP_PROP_FPS)
font = cv2.FONT_HERSHEY_PLAIN
starting_time = time.time()
reader = Reader(['en'])
max_plat_no = set()
@app.route('/start',methods=['GET','POST'])
def start():
frame_id = 0
while True:
ret, frame = cap.read()
frame_id += 1
height, width, channels = frame.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.2:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.4, 0.4)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = colors[class_ids[i]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color=(255, 0, 0), thickness=2)
# cv2.rectangle(frame, (x, y), (x + w, y + 30), color)
cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y - 10), font, 2, (255, 255, 255),2)
# extract number plate area in another window
crop_image = frame[y:y + h, x:x + w]
#grayscale the image
gray = cv2.cvtColor(crop_image, cv2.COLOR_BGR2GRAY)
# thresh the image using otus method
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY)
#apply the easyocr to the thresh
text = reader.readtext(gray)
#print(ret)
if len(text) > 0:
if (text[0][2]) > 0.80:
print(text[0][1])
if text[0][1] in max_plat_no:
pass
else:
max_plat_no.add(text[0][1])
with open('Number_Record.csv', 'a+') as csv_file:
csv_file.write(text[0][1] + '\n')
cv2.imshow("crop",crop_image)
elapsed_time = time.time() - starting_time
fps = frame_id / elapsed_time
cv2.putText(frame, "FPS: " + str(round(fps,1)), (10, 50), font, 3, (0, 0, 0), 2)
cv2.imshow("Frame Rate", frame)
#fram = jpeg.tobytes()
#yield (b'--fram\r\n'
# b'Content-Type: frame/jpeg\r\n\r\n' + fram + b'\r\n\r\n')
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
return render_template('html_main.html')
@app.route('/stop',methods=['POST'])
def stop():
cap.release()
cv2.destroyAllWindows()
return render_template('html_main.html')
#to run the flask app
if __name__=='__main__':
app.run(debug=True,port=6664)