-
Notifications
You must be signed in to change notification settings - Fork 0
/
MobileNetV3-FineTune.py
187 lines (136 loc) · 4.48 KB
/
MobileNetV3-FineTune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from EarlyStopping import EarlyStopping
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import os
import pandas as pd
from PIL import Image
from torch.utils.data import (
Dataset,
DataLoader
)
import numpy as np
from tqdm import tqdm
import torchvision.transforms as transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_classes = 2
learning_rate = 1e-3
batch_size = 1024
num_epochs = 20
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
model = torchvision.models.mobilenet_v3_small(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.avgpool = Identity()
model.classifier = nn.Sequential(
nn.Linear(28224, 100), nn.ReLU(), nn.Linear(100, num_classes)
)
model.to(device)
my_transforms = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]
),
]
)
class MaskDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
self.annotations = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
img_path = os.path.join(self.root_dir, self.annotations.iloc[index, 0])
image = Image.open(img_path)
y_label = torch.tensor(int(self.annotations.iloc[index, 1]))
if self.transform:
image = self.transform(image)
return (image,y_label)
train_dataset = MaskDataset(
csv_file="train.csv",
root_dir="",
transform=my_transforms,
)
test_dataset = MaskDataset(
csv_file="test.csv",
root_dir="",
transform=my_transforms,
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, factor=0.1, patience=5, verbose=True
)
train_losses = []
valid_losses = []
avg_train_losses = []
avg_valid_losses = []
early_stopping = EarlyStopping(patience=4, verbose=True)
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
data = data.to(device=device)
targets = targets.to(device=device)
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_losses.append(loss.item())
model.eval()
for data, target in test_loader:
output = model(data)
loss = criterion(output, target)
valid_losses.append(loss.item())
train_loss = np.average(train_losses)
valid_loss = np.average(valid_losses)
avg_train_losses.append(train_loss)
avg_valid_losses.append(valid_loss)
mean_loss = sum(losses) / len(losses)
scheduler.step(mean_loss)
print(f"Cost at epoch {epoch+1} is {mean_loss} | valid_loss: {valid_loss:.5f} | train_loss: {train_loss:.5f}")
# clear lists to track next epoch
train_losses = []
valid_losses = []
early_stopping(valid_loss, model)
if early_stopping.early_stop:
print("Early stopping")
break
def check_accuracy(loader, model):
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in tqdm(loader):
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
def predict(model_path, sample_image):
model = torch.load(model_path)
model.eval()
image = Image.open(sample_image)
image = my_transforms(image)[None, :, :, :]
x = model(image)
return "Mask" if x[0].argmax(dim=0) else "No Mask"
check_accuracy(test_loader, model)
res = predict(model_path="model.pth",sample_image="Mask-Dataset/No_Mask/5.jpg")
print(res)