-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
115 lines (83 loc) · 2.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
from PIL import Image as pil_image
# Keras
from tensorflow.keras.applications.imagenet_utils import preprocess_input, decode_predictions
from tensorflow.keras.models import Model , load_model
from keras.preprocessing import image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
app = Flask(__name__)
Model= load_model('models/model_v2_weights.h5')
lesion_classes_dict = {
0 : 'Melanocytic nevi',
1 : 'Melanoma',
2 : 'Benign keratosis-like lesions ',
3 : 'Basal cell carcinoma',
4 : 'Actinic keratoses',
5 : 'Vascular lesions',
6 : 'Dermatofibroma'
}
def model_predict(img_path, Model):
img = image.load_img(img_path, target_size=(75,100,3))
#img = np.asarray(pil_image.open('img').resize((120,90)))
#x = np.asarray(img.tolist())
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
# Be careful how your trained model deals with the input
# otherwise, it won't make correct prediction!
#x = preprocess_input(x, mode='caffe')
preds = Model.predict(x)
return preds
def visualisePlots(X,Y, rows, columns):
class_dicts = {
0: 'nv',
1: 'mel',
2: 'bkl',
3: 'bcc',
4: 'akiec',
5: 'vasc',
6: 'df',
}
data = []
target = []
for i in range(rows*columns):
data.append(X[i])
target.append(Y[i])
width = 10
height = 10
for i in range(columns*rows):
temp_img = array_to_img(data[i])
return temp_img
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path , Model)
# Process your result for human
pred_class = preds.argmax(axis=-1) # Simple argmax
#pred_class = decode_predictions(preds, top=1)
pr = lesion_classes_dict[pred_class[0]]
result =str(pr)
return result
return None
if __name__ == '__main__':
app.run(debug=True)