Skip to content

Nodes# Coherent Noise

Auburn edited this page Jun 24, 2024 · 3 revisions

Coherent Noise

Simplex

Smooth gradient noise from an N dimensional simplex grid Developed by Ken Perlin in 2001

Feature Scale = 100.0f

Effectively 1.0 / frequency

Output Min = -1.0f

Minimum bound of output range

Output Max = 1.0f

Maximum bound of output range

Open Simplex 2

Smooth gradient noise from an N dimensional simplex grid, alternate implementation Developed by K.jpg in 2019

images/Open Simplex 2.png

Feature Scale = 100.0f

Effectively 1.0 / frequency

Output Min = -1.0f

Minimum bound of output range

Output Max = 1.0f

Maximum bound of output range

Perlin

Smooth gradient noise from N dimensional grid Developed by Ken Perlin in 1983

Feature Scale = 100.0f

Effectively 1.0 / frequency

Output Min = -1.0f

Minimum bound of output range

Output Max = 1.0f

Maximum bound of output range

Value

Smooth gradient noise from N dimensional grid

Feature Scale = 100.0f

Effectively 1.0 / frequency

Output Min = -1.0f

Minimum bound of output range

Output Max = 1.0f

Maximum bound of output range

Cellular Value

Returns value of Nth closest cell Value is generated using white noise

Minkowski P - Hybrid Lookup

Default: 1.5 Only affects Minkowski distance function 1 = Manhattan 2 = Euclidean

Jitter Modifier - Hybrid Lookup

Default: 1.0 Above 1.0 will cause grid artifacts

Feature Scale = 100.0f

Effectively 1.0 / frequency

Output Min = -1.0f

Minimum bound of output range

Output Max = 1.0f

Maximum bound of output range

Distance Function = Euclidean Squared

How distance to closest cells is calculated Hybrid is EuclideanSquared + Manhattan

  • Euclidean
  • Euclidean Squared (Default)
  • Manhattan
  • Hybrid
  • Max Axis
  • Minkowski

Value Index = 0

Nth closest cell

Cellular Distance

Returns distance of Nth closest cell Distance of Index0 and Index1 are combined according to return type Returned value is always positive except when using Index0Sub1 and Index0 > Index1

Minkowski P - Hybrid Lookup

Default: 1.5 Only affects Minkowski distance function 1 = Manhattan 2 = Euclidean

Jitter Modifier - Hybrid Lookup

Default: 1.0 Above 1.0 will cause grid artifacts

Feature Scale = 100.0f

Effectively 1.0 / frequency

Output Min = -1.0f

Minimum bound of output range

Output Max = 1.0f

Maximum bound of output range

Distance Function = Euclidean Squared

How distance to closest cells is calculated Hybrid is EuclideanSquared + Manhattan

  • Euclidean
  • Euclidean Squared (Default)
  • Manhattan
  • Hybrid
  • Max Axis
  • Minkowski

Distance Index 0 = 0

Nth closest cell

Distance Index 1 = 1

Nth closest cell

Return Type = Index0

How to combine Index 0 & Index 1

  • Index0 (Default)
  • Index0Add1
  • Index0Sub1
  • Index0Mul1
  • Index0Div1

Cellular Lookup

Returns value of closest cell Value is generated at the cell center using the lookup source

images/Cellular Lookup.png

Lookup - Node Lookup

Used to generate cell values

Minkowski P - Hybrid Lookup

Default: 1.5 Only affects Minkowski distance function 1 = Manhattan 2 = Euclidean

Jitter Modifier - Hybrid Lookup

Default: 1.0 Above 1.0 will cause grid artifacts

Feature Scale = 100.0f

Effectively 1.0 / frequency

Distance Function = Euclidean Squared

How distance to closest cells is calculated Hybrid is EuclideanSquared + Manhattan

  • Euclidean
  • Euclidean Squared (Default)
  • Manhattan
  • Hybrid
  • Max Axis
  • Minkowski

Open Simplex 2S

Smoother gradient noise from an N dimensional simplex grid Developed by K.jpg in 2017

images/Open Simplex 2S.png

Feature Scale = 100.0f

Effectively 1.0 / frequency

Output Min = -1.0f

Minimum bound of output range

Output Max = 1.0f

Maximum bound of output range