-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_page.py
63 lines (46 loc) · 1.62 KB
/
predict_page.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import streamlit as st
import pickle
import numpy as np
def load_model():
with open('saved_steps.pkl', 'rb') as file:
data = pickle.load(file)
return data
data = load_model()
regressor = data["model"]
le_country = data["le_country"]
le_education = data["le_education"]
# show predicition page
def show_predict_page():
st.title('Software Developer Salary Prediction')
st.write('''We need some information to predict the salary''')
countries = ("United States of America", "India", "Germany",
"United Kingdom of Great Britain and Northern Ireland",
'Canada',
'France',
'Brazil',
'Poland',
'Netherlands',
'Spain',
'Australia',
'Italy',
'Russian Federation',
'Sweden',
'Switzerland',
'Turkey')
education = (
'Less than a Bachelors',
"Bachelor’s degree",
'Master’s degree',
'Post grad',
)
country = st.selectbox("Country", countries)
education = st.selectbox("Education Level", education)
experience= st.slider('Years of Experience', 0,50, 3)
ok = st.button('Calculate Salary')
if ok:
X = np.array([[country, education, experience ]])
X[:, 0] = le_country.transform(X[:,0])
X[:, 1] = le_education.transform(X[:,1])
X = X.astype(float)
salary = regressor.predict(X)
st.subheader(f"The estimated salary is ${salary[0]:.2f}")