-
Notifications
You must be signed in to change notification settings - Fork 0
/
createStatsNeuralNetwork7LayerHyperparamSearchRange.m
33 lines (26 loc) · 1.51 KB
/
createStatsNeuralNetwork7LayerHyperparamSearchRange.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
function createStatsNeuralNetwork7LayerHyperparamSearchRange()
% SPDX-License-Identifier: BSD-3-Clause
CLASSIFIER_NAME = "StatsNeuralNetwork7Layer";
% Set up data paths
beehiveDataSetup;
% Find the number of observations in the training dataset so we can set the search
% range for lambda. We can look at the number of observations in the row labels rather
% than loading the actual data, as this will be faster.
load(trainingDataDir + filesep + "trainingData","trainingRowLabels");
nObservations = numel(vertcat(trainingRowLabels{:}));
% Create the optimizable variables that will be used by bayesopt
optimizableParams = [
optimizableVariable("LayerSize1",[5,100],Type="integer",Transform="log"),...
optimizableVariable("LayerSize2",[5,100],Type="integer",Transform="log"),...
optimizableVariable("LayerSize3",[5,100],Type="integer",Transform="log"),...
optimizableVariable("LayerSize4",[5,100],Type="integer",Transform="log"),...
optimizableVariable("LayerSize5",[5,100],Type="integer",Transform="log"),...
optimizableVariable("LayerSize6",[5,100],Type="integer",Transform="log"),...
optimizableVariable("LayerSize7",[5,100],Type="integer",Transform="log"),...
optimizableVariable("Lambda",1/nObservations * [1e-5,1],Transform="log"),...
optimizableVariable("Activations", ["relu", "tanh", "sigmoid"]),...
optimizableVariable("FalseNegativeCost",[1 10],Type="integer")
];
save(trainingDataDir + filesep + CLASSIFIER_NAME ...
+ "HyperparameterSearchValues","optimizableParams","-v7.3");
end