-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_online.py
545 lines (479 loc) · 22.4 KB
/
main_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import random
import os
import argparse
import time
from datetime import datetime
from tqdm import tqdm
from transformers import AutoTokenizer
from openai import OpenAI
from external.qwen25_math_evaluation.evaluate import evaluate
from external.qwen25_math_evaluation.utils import set_seed, load_jsonl, save_jsonl, construct_prompt
from external.qwen25_math_evaluation.parser import *
from external.qwen25_math_evaluation.trajectory import *
from external.qwen25_math_evaluation.data_loader import load_data
from external.qwen25_math_evaluation.python_executor import PythonExecutor
from external.skywork_o1_prm_inference.model_utils.io_utils import prepare_input, derive_step_rewards_vllm
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--data_names", default="math500", type=str)
parser.add_argument("--data_dir", default="./external/qwen25_math_evaluation/data", type=str)
parser.add_argument("--draft_model_name_or_path", default="Qwen/Qwen2.5-Math-1.5B-Instruct", type=str)
parser.add_argument("--draft_model_ip_address", default="http://localhost:12340/v1", type=str)
parser.add_argument("--target_model_name_or_path", default="Qwen/Qwen2.5-Math-7B-Instruct", type=str)
parser.add_argument("--target_model_ip_address", default="http://localhost:12341/v1", type=str)
parser.add_argument("--prm_name_or_path", default="Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B", type=str)
parser.add_argument("--prm_ip_address", default="http://localhost:12342/v1", type=str)
parser.add_argument("--output_dir", default="./output", type=str)
parser.add_argument("--prompt_type", default="qwen25-math-cot", type=str)
parser.add_argument("--split", default="test", type=str)
parser.add_argument("--num_test_sample", default=-1, type=int) # -1 for full data
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=-1, type=int)
parser.add_argument("--temperature", default=0, type=float)
parser.add_argument("--n_sampling", default=1, type=int)
parser.add_argument("--top_p", default=1, type=float)
parser.add_argument("--max_tokens_per_call", default=2048, type=int)
parser.add_argument("--shuffle", action="store_true")
parser.add_argument("--save_outputs", action="store_true")
parser.add_argument("--overwrite", action="store_true")
parser.add_argument("--use_safetensors", action="store_true")
parser.add_argument("--num_shots", type=int, default=0)
parser.add_argument("--step_word", type=str, default="\n\n")
parser.add_argument("--prm_threshold", type=float, default=0.7)
parser.add_argument("--max_steps", type=int, default=100)
parser.add_argument(
"--apply_chat_template",
action="store_true",
help="Apply chat template to prompt.",
)
parser.add_argument("--pipeline_parallel_size", type=int, default=1)
parser.add_argument("--patience", type=int, default=5)
parser.add_argument(
"--adapt_few_shot",
action="store_true",
help="Few shot for multiple-choice questions, zero shot for others.",
)
args = parser.parse_args()
args.top_p = (
1 if args.temperature == 0 else args.top_p
) # top_p must be 1 when using greedy sampling (vllm)
return args
def prepare_data(data_name, args):
examples = load_data(data_name, args.split, args.data_dir)
# sample `num_test_sample` from dataset
if args.num_test_sample > 0:
examples = examples[: args.num_test_sample]
# shuffle
if args.shuffle:
random.seed(datetime.now().timestamp())
random.shuffle(examples)
# select start and end
examples = examples[args.start : len(examples) if args.end == -1 else args.end]
# get out_file name
out_file_prefix = f"{args.split}_{args.prompt_type}_{args.num_test_sample}_seed{args.seed}_t{args.temperature}"
output_dir = args.output_dir
if not os.path.exists(output_dir):
output_dir = f"outputs/{output_dir}"
out_file = f"{output_dir}/{data_name}/{out_file_prefix}_s{args.start}_e{args.end}_delta{args.prm_threshold}_maxsteps{args.max_steps}.jsonl"
os.makedirs(f"{output_dir}/{data_name}", exist_ok=True)
# load all processed samples
processed_samples = []
if not args.overwrite:
processed_files = [
f
for f in os.listdir(f"{output_dir}/{data_name}/")
if f.endswith(".jsonl") and f.startswith(out_file_prefix)
]
for f in processed_files:
processed_samples.extend(
list(load_jsonl(f"{output_dir}/{data_name}/{f}"))
)
# dedepulicate
processed_samples = {sample["idx"]: sample for sample in processed_samples}
processed_idxs = list(processed_samples.keys())
processed_samples = list(processed_samples.values())
examples = [example for example in examples if example["idx"] not in processed_idxs]
return examples, processed_samples, out_file
def setup(args):
# load model
openai_api_key = "EMPTY"
draft_client = OpenAI(
api_key=openai_api_key,
base_url=args.draft_model_name_or_path,
)
draft_tokenizer = AutoTokenizer.from_pretrained(args.draft_model_name_or_path, trust_remote_code=True)
target_client = OpenAI(
api_key=openai_api_key,
base_url=args.target_model_name_or_path,
)
target_tokenizer = AutoTokenizer.from_pretrained(args.target_model_name_or_path, trust_remote_code=True)
prm_client = OpenAI(
api_key=openai_api_key,
base_url=args.prm_ip_address,
)
prm_tokenizer = AutoTokenizer.from_pretrained(args.prm_name_or_path, trust_remote_code=True)
# infer & eval
data_list = args.data_names.split(",")
results = []
for data_name in data_list:
results.append(main(draft_client, target_client, prm_client, draft_tokenizer, target_tokenizer, prm_tokenizer, data_name, args))
# add "avg" result to data_list and results
data_list.append("avg")
results.append({"acc": sum([result["acc"] for result in results]) / len(results),})
# print all results
pad = max([len(data_name) for data_name in data_list])
print("\t".join(data_name.ljust(pad, " ") for data_name in data_list))
print("\t".join([f"{result['acc']:.1f}".ljust(pad, " ") for result in results]))
def is_multi_choice(answer):
for c in answer:
if c not in ["A", "B", "C", "D", "E"]:
return False
return True
def get_responses(args, draft_client, target_client, prm_client, draft_tokenizer, target_tokenizer, prm_tokenizer, prompts, problems):
outputs = [None] * len(prompts) # Initialize with None for tracking
token_counts = [(0, 0, 0) for _ in prompts] # (draft_tokens, target_tokens, discarded_draft_tokens) for each prompt
step_info = [[] for _ in prompts] # List to store (step_num, client_id) for each prompt
current_prompts = [(i, p, []) for i, p in enumerate(prompts)] # (index, prompt, responses)
all_rewards = [[] for _ in prompts] # List to store (step_num, client_id) for each prompt
current_problems = problems
num_step = 0
pre_num_finished = 0
num_unchanged = 0
while current_prompts:
batch_prompts = [p + ''.join(r[0] for r in responses) for _, p, responses in current_prompts]
# Firstly generate with the draft model
draft_responses = draft_client.completions.create(
model=args.draft_model_name_or_path.split("/")[-1],
prompt=batch_prompts,
temperature=args.temperature,
top_p=args.top_p,
max_tokens=args.max_tokens_per_call,
stop=[args.step_word],
).choices
draft_responses = sorted(draft_responses, key=lambda x: int(x.index))
# Evaluate draft responses with PRM
full_responses = [''.join(r[0] for r in prev_resp) + new_resp.text
for (_, _, prev_resp), new_resp in zip(current_prompts, draft_responses)]
processed_data = [
prepare_input(p, full_resp, tokenizer=prm_tokenizer, step_token=args.step_word)
for p, full_resp in zip(current_problems, full_responses)
]
input_ids, steps, reward_flags = zip(*processed_data)
rewards = prm_client.embeddings.create(
input=input_ids,
model=args.prm_name_or_path.split("/")[-1],
)
step_rewards = derive_step_rewards_vllm(rewards, reward_flags) # list[list]
# Split prompts based on step_reward
good_prompts = []
bad_prompts = []
for (orig_idx, prompt, prev_responses), draft_response, step_reward in zip(current_prompts, draft_responses, step_rewards):
all_rewards[orig_idx].append(round(step_reward[-1], 6))
if step_reward[-1] >= args.prm_threshold:
good_prompts.append((orig_idx, prompt, prev_responses, draft_response, True)) # True means using draft model
else:
draft_response_text = draft_response.text + args.step_word
token_counts[orig_idx] = (
token_counts[orig_idx][0],
token_counts[orig_idx][1],
token_counts[orig_idx][2]+len(draft_tokenizer.encode(draft_response_text))
)
bad_prompts.append((orig_idx, prompt, prev_responses))
# Generate using target model for bad prompts
if bad_prompts:
batch_prompts = [p + ''.join(r[0] for r in responses) for _, p, responses in bad_prompts]
target_responses = target_client.completions.create(
model=args.target_model_name_or_path.split("/")[-1],
prompt=batch_prompts,
temperature=args.temperature,
top_p=args.top_p,
max_tokens=args.max_tokens_per_call,
n=1,
stop=[args.step_word],
).choices
target_responses = sorted(target_responses, key=lambda x: int(x.index))
# Add target model responses to good_prompts
for (orig_idx, prompt, prev_responses), target_response in zip(bad_prompts, target_responses):
good_prompts.append((orig_idx, prompt, prev_responses, target_response, False)) # False means using target model
# Process all responses
next_prompts = []
next_problems = []
for orig_idx, prompt, prev_responses, response, used_draft in sorted(good_prompts, key=lambda x: x[0]):
response_text = response.text + args.step_word
client_id = 1 if used_draft else 2
tokenizer = draft_tokenizer if client_id == 1 else target_tokenizer
num_tokens = len(tokenizer.encode(response_text))
# Update token counts
if client_id == 1:
token_counts[orig_idx] = (token_counts[orig_idx][0] + num_tokens, token_counts[orig_idx][1], token_counts[orig_idx][2])
else:
token_counts[orig_idx] = (token_counts[orig_idx][0], token_counts[orig_idx][1] + num_tokens, token_counts[orig_idx][2])
# Record step information
step_info[orig_idx].append((num_step, client_id))
full_responses = prev_responses + [(response_text, client_id)]
full_responses_text = ''.join(r[0] for r in full_responses)
# terminate conditions
if (response.stop_reason is None) \
or len(draft_tokenizer.encode(prompt + full_responses_text)) >= args.max_tokens_per_call \
or len(target_tokenizer.encode(prompt + full_responses_text)) >= args.max_tokens_per_call \
or num_step >= args.max_steps - 1 \
or num_unchanged >= args.patience - 1:
outputs[orig_idx] = full_responses_text[:-len(args.step_word)]
else:
next_prompts.append((orig_idx, prompt, full_responses))
next_problems.append(problems[orig_idx])
current_prompts = next_prompts
current_problems = next_problems
assert len(current_prompts) == len(current_problems)
if len(outputs) - len(current_prompts) > pre_num_finished:
num_unchanged = 0
pre_num_finished = len(outputs) - len(current_prompts)
else:
num_unchanged += 1
print(f"#### Step {num_step}: Completed {pre_num_finished} / {len(outputs)}, #unchanged {num_unchanged} / {args.patience}")
num_step += 1
return outputs, token_counts, step_info, all_rewards
def main(draft_client, target_client, prm_client, draft_tokenizer, target_tokenizer, prm_tokenizer, data_name, args):
examples, processed_samples, out_file = prepare_data(data_name, args)
print("=" * 50)
print("data:", data_name, " ,remain samples:", len(examples))
if len(examples) > 0:
print(examples[0])
# init python executor
if "pal" in args.prompt_type:
executor = PythonExecutor(get_answer_expr="solution()")
else:
executor = PythonExecutor(get_answer_from_stdout=True)
samples = []
for example in tqdm(examples, total=len(examples)):
idx = example["idx"]
# parse question and answer
example["question"] = parse_question(example, data_name)
if example["question"] == "":
continue
gt_cot, gt_ans = parse_ground_truth(example, data_name)
example["gt_ans"] = gt_ans
full_prompt = construct_prompt(example, data_name, args)
if idx == args.start:
print(full_prompt)
sample = {
"idx": idx,
"question": example["question"],
"gt_cot": gt_cot,
"gt": gt_ans,
"prompt": full_prompt,
}
# add remain fields
for key in [
"level",
"type",
"unit",
"solution_type",
"choices",
"solution",
"ques_type",
"ans_type",
"answer_type",
"dataset",
"subfield",
"filed",
"theorem",
"answer",
]:
if key in example:
sample[key] = example[key]
samples.append(sample)
# repeat n times
input_prompts = [
sample["prompt"] for sample in samples for _ in range(args.n_sampling)
]
if args.apply_chat_template:
input_prompts = [
draft_tokenizer.apply_chat_template(
[{"role": "user", "content": prompt.strip()}],
tokenize=False,
add_generation_prompt=True,
)
for prompt in input_prompts
]
remain_prompts = input_prompts
remain_prompts = [(i, prompt) for i, prompt in enumerate(remain_prompts)]
end_prompts = []
max_func_call = 1 if args.prompt_type in ["cot", "pal"] else 4
stop_words = ["</s>", "<|im_end|>", "<|endoftext|>"]
if args.prompt_type in ["cot"]:
stop_words.append("\n\nQuestion:")
if args.prompt_type in ["pal", "tool-integrated", "jiuzhang_tora"]:
stop_words.extend(["\n\n---", "```output"])
elif args.prompt_type in ["wizard_zs", "platypus_fs"]:
stop_words.extend(["Instruction", "Response"])
elif "jiuzhang" in args.prompt_type:
stop_words.append("\n\n## Question")
elif "numina" in args.prompt_type:
stop_words.append("\n### Problem")
elif "pure" in args.prompt_type:
stop_words.append("\n\n\n")
# start inference
start_time = time.time()
for epoch in range(max_func_call):
print("-" * 20, "Epoch", epoch)
current_prompts = remain_prompts
if len(current_prompts) == 0:
break
# get all outputs
prompts = [item[1] for item in current_prompts]
problems = [sample["question"] for sample in samples]
assert len(prompts) == len(problems)
outputs, token_counts, turn_info, all_rewards = get_responses(
args,
draft_client,
target_client,
prm_client,
draft_tokenizer,
target_tokenizer,
prm_tokenizer,
prompts,
problems,
)
assert len(outputs) == len(current_prompts)
# process all outputs
remain_prompts = []
remain_codes = []
for (i, query), output in zip(current_prompts, outputs):
output = output.rstrip()
query += output
if args.prompt_type == "pal":
remain_prompts.append((i, query))
if "```python" in output:
output = extract_program(query)
remain_codes.append(output)
elif args.prompt_type == "cot":
end_prompts.append((i, query))
elif "boxed" not in output and output.endswith("```"):
program = extract_program(query)
remain_prompts.append((i, query))
remain_codes.append(program)
else:
end_prompts.append((i, query))
# execute the remain prompts
remain_results = executor.batch_apply(remain_codes)
for k in range(len(remain_prompts)):
i, query = remain_prompts[k]
res, report = remain_results[k]
exec_result = res if res else report
if "pal" in args.prompt_type:
exec_result = "\\boxed{" + exec_result + "}"
exec_result = f"\n```output\n{exec_result}\n```\n"
query += exec_result
# not end
if epoch == max_func_call - 1:
query += "\nReach max function call limit."
remain_prompts[k] = (i, query)
# unsolved samples
print("Unsolved samples:", len(remain_prompts))
end_prompts.extend(remain_prompts)
# sort by idx
end_prompts = sorted(end_prompts, key=lambda x: x[0])
# remove input_prompt from end_prompt
codes = []
assert len(input_prompts) == len(end_prompts)
for i in range(len(input_prompts)):
_, end_prompt = end_prompts[i]
code = end_prompt.split(input_prompts[i])[-1].strip()
for stop_word in stop_words:
if stop_word in code:
code = code.split(stop_word)[0].strip()
codes.append(code)
# extract preds
results = [
run_execute(executor, code, args.prompt_type, data_name) for code in codes
]
time_use = time.time() - start_time
# put results back to examples
all_samples = []
for i, sample in enumerate(samples):
code = codes[i * args.n_sampling : (i + 1) * args.n_sampling]
result = results[i * args.n_sampling : (i + 1) * args.n_sampling]
preds = [item[0] for item in result]
reports = [item[1] for item in result]
for j in range(len(preds)):
if sample["gt"] in ["A", "B", "C", "D", "E"] and preds[j] not in [
"A",
"B",
"C",
"D",
"E",
]:
preds[j] = choice_answer_clean(code[j])
elif is_multi_choice(sample["gt"]) and not is_multi_choice(preds[j]):
# remove any non-choice char
preds[j] = "".join(
[c for c in preds[j] if c in ["A", "B", "C", "D", "E"]]
)
sample.pop("prompt")
sample.update(
{"code": code, "pred": preds, "report": reports,
"token_counts": token_counts[i], "turn_info": turn_info[i], "reward": all_rewards[i]}
)
all_samples.append(sample)
# add processed samples
all_samples.extend(processed_samples)
all_samples, result_json = evaluate(
samples=all_samples,
data_name=data_name,
prompt_type=args.prompt_type,
execute=True,
)
# save outputs
if len(processed_samples) < len(all_samples) and args.save_outputs:
save_jsonl(all_samples, out_file)
# save metrics
result_json["time_use_in_second"] = time_use
result_json["time_use_in_minite"] = (
f"{int(time_use // 60)}:{int(time_use % 60):02d}"
)
llm1_tokens = [0, 0] # (correct, wrong)
llm1_discarded_tokens = [0, 0]
llm2_tokens = [0, 0]
for i, sample in enumerate(all_samples):
if sample["score"][0]:
llm1_tokens[0] += sample["token_counts"][0]
llm2_tokens[0] += sample["token_counts"][1]
llm1_discarded_tokens[0] += sample["token_counts"][2]
else:
llm1_tokens[1] += sample["token_counts"][0]
llm2_tokens[1] += sample["token_counts"][1]
llm1_discarded_tokens[1] += sample["token_counts"][2]
total_tokens = sum(llm1_tokens) + sum(llm2_tokens) + sum(llm1_discarded_tokens)
total_tokens_for_correct_pred = llm1_discarded_tokens[0] + llm1_tokens[0] + llm2_tokens[0]
total_tokens_for_wrong_pred = llm1_discarded_tokens[1] + llm1_tokens[1] + llm2_tokens[1]
result_json["tokens_ratio_overall(llm1,llm2)"] = (
(sum(llm1_tokens)+sum(llm1_discarded_tokens))/total_tokens, sum(llm2_tokens)/total_tokens
) if total_tokens > 0 else (0,0)
result_json["tokens_ratio_correct_prediction(llm1,llm2)"] = (
(llm1_discarded_tokens[0]+llm1_tokens[0])/total_tokens_for_correct_pred, llm2_tokens[0]/total_tokens_for_correct_pred
) if total_tokens_for_correct_pred > 0 else (0,0)
result_json["tokens_ratio_wrong_prediction(llm1,llm2)"] = (
(llm1_discarded_tokens[1]+llm1_tokens[1])/total_tokens_for_wrong_pred, llm2_tokens[1]/total_tokens_for_wrong_pred
) if total_tokens_for_wrong_pred > 0 else (0,0)
result_json["tokens_ratio(correct,wrong)"] = (
total_tokens_for_correct_pred/total_tokens, total_tokens_for_wrong_pred/total_tokens
) if total_tokens > 0 else (0,0)
result_json["tokens_ratio_discarded(correct,wrong)"] = (
llm1_discarded_tokens[0]/total_tokens_for_correct_pred, llm1_discarded_tokens[1]/total_tokens_for_wrong_pred
) if (total_tokens_for_correct_pred > 0 and total_tokens_for_wrong_pred > 0) else (0,0)
result_json["acceptance_rate"] = (
(llm1_tokens[0] + llm1_tokens[1])/(llm1_tokens[0] + llm1_tokens[1] + llm1_discarded_tokens[0] + llm1_discarded_tokens[1])
) if ((llm1_tokens[0] + llm1_tokens[1]) > 0) else 0
result_json["num_draft_tokens"] = sum(llm1_tokens) + sum(llm1_discarded_tokens)
result_json["num_target_tokens"] = sum(llm2_tokens)
with open(
out_file.replace(".jsonl", f"_{args.prompt_type}_metrics.json"), "w"
) as f:
json.dump(result_json, f, indent=4)
return result_json
if __name__ == "__main__":
args = parse_args()
set_seed(args.seed)
setup(args)