-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
412 lines (341 loc) · 13.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import sys
sys.path.append('/home/hoo7311/anaconda3/envs/yolov7/lib/python3.8/site-packages')
import os
import argparse
import numpy as np
import time
import logging
import numpy as np
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
from typing import *
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset
from torch.utils.tensorboard import SummaryWriter
from torchsummary import summary
from utils.dataset import load_dataloader
from utils.callback import CheckPoint, EarlyStopping
from utils.scheduler import PolynomialLRDecay, CosineWarmupLR
from utils.plots import plot_loss_graphs
logger = logging.getLogger('The logs of model training')
logger.setLevel(logging.INFO)
stream_handler = logging.StreamHandler()
logger.addHandler(stream_handler)
def train_on_batch(
model,
train_loader,
device,
optimizer,
loss_func,
log_step,
):
model.train()
batch_loss, batch_acc = 0, 0
for batch, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = loss_func(outputs, labels)
output_index = torch.argmax(outputs, dim=1)
acc = (output_index == labels).sum() / len(outputs)
loss.backward()
optimizer.step()
if log_step > 0:
if (batch + 1) / log_step == 0:
logger(f'\n[Batch {batch+1}/{len(train_loader)}]'
f' train loss: {loss:.3f} accuracy: {acc:.3f}')
batch_loss += loss.item()
batch_acc += acc.item()
return model, batch_loss/(batch+1), batch_acc/(batch+1)
@torch.no_grad()
def valid_on_batch(
model,
valid_loader,
loss_func,
device,
log_step,
):
model.eval()
batch_loss, batch_acc = 0, 0
for batch, (images, labels) in enumerate(valid_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = loss_func(outputs, labels)
output_index = torch.argmax(outputs, dim=1)
acc = (output_index == labels).sum() / len(outputs)
if log_step > 0:
if (batch + 1) / log_step == 0:
logger(f'\n[Batch {batch+1}/{len(valid_loader)}]'
f' valid loss: {loss:.3f} accuracy: {acc:.3f}')
batch_loss += loss.item()
batch_acc += acc.item()
return model, batch_loss/(batch+1), batch_acc/(batch+1)
def training(
model,
train_loader,
valid_loader,
lr: float=0.001,
weight_decay: float=5e-4,
epochs: int=100,
momentum: Optional[float]=0.9,
optimizer_name: str='momentum',
lr_scheduling: bool=True,
lr_scheduler_name: str='poly',
check_point: bool=True,
early_stop: bool=False,
project_name: str='experiment1',
class_weight: Optional[torch.Tensor]=None,
train_log_step: int=0,
valid_log_step: int=0,
es_patience: int=30,
quantization: bool=False, # quantization aware training
):
# settings for training
assert optimizer_name in ('momentum', 'adam', 'adamw', 'nadam', 'radam'), \
f'{optimizer_name} does not exists.'
# quantization
if quantization:
from quantization.quantize import prepare_qat, fuse_modules
project_name += '_qat'
model = fuse_modules(model, mode='train')
model = prepare_qat(model)
# callbacks
os.makedirs(f'./runs/train/{project_name}/weights', exist_ok=True)
cp = CheckPoint(verbose=True)
es_path = f'./runs/train/{project_name}/weights/es_weight.pt'
es = EarlyStopping(verbose=True, patience=es_patience, path=es_path)
# device and model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f'device is {device}')
model = model.to(device)
logger.info('model loading ready.')
# loss function
loss_func = nn.CrossEntropyLoss(weight=class_weight)
# optimizer
if optimizer_name == 'momentum':
optimizer = optim.SGD(
model.parameters(),
momentum=momentum,
lr=lr,
weight_decay=weight_decay,
)
else:
if optimizer_name == 'adam':
opt = optim.Adam
elif optimizer_name == 'adamw':
opt = optim.AdamW
elif optimizer_name == 'radam':
opt = optim.RAdam
else:
opt = optim.NAdam
if type(momentum) is float:
betas = (momentum, 0.999)
else:
betas = (0.9, 0.999)
optimizer = opt(
model.parameters(),
lr=lr,
weight_decay=weight_decay,
betas=betas,
)
logger.info(f'optimizer {optimizer} ready.')
# schedulers
if lr_scheduler_name == 'poly':
lr_scheduler = PolynomialLRDecay(
optimizer=optimizer,
max_decay_steps=epochs,
)
else:
lr_scheduler = CosineWarmupLR(
optimizer=optimizer,
epochs=epochs,
warmup_epochs=int(epochs*0.1),
)
# tensorboard
writer = SummaryWriter(log_dir=f'./runs/train/{project_name}')
loss_list, acc_list = [], []
val_loss_list, val_acc_list = [], []
start_training = time.time()
pbar = tqdm(range(epochs), total=int(epochs))
for epoch in pbar:
epoch_time = time.time()
##################### training #####################
model, train_loss, train_acc = train_on_batch(
model=model,
train_loader=train_loader,
device=device,
optimizer=optimizer,
loss_func=loss_func,
log_step=train_log_step,
)
loss_list.append(train_loss)
acc_list.append(train_acc)
####################################################
#################### validating ####################
model, valid_loss, valid_acc = valid_on_batch(
model=model,
valid_loader=valid_loader,
loss_func=loss_func,
device=device,
log_step=valid_log_step,
)
val_loss_list.append(valid_loss)
val_acc_list.append(valid_acc)
####################################################
logger.info(f'\n{"="*30} Epoch {epoch+1}/{epochs} {"="*30}'
f'\ntime: {(time.time() - epoch_time):.2f}s'
f' lr = {optimizer.param_groups[0]["lr"]}')
logger.info(f'\ntrain average loss: {train_loss:.3f}'
f' accuracy: {train_acc:.3f}')
logger.info(f'\nvalid average loss: {valid_loss:.3f}'
f' accuracy: {valid_acc:.3f}')
logger.info(f'\n{"="*80}')
writer.add_scalar('lr', optimizer.param_groups[0]["lr"], epoch)
writer.add_scalar('train/loss', train_loss, epoch)
writer.add_scalar('train/accuracy', train_acc, epoch)
writer.add_scalar('valid/loss', valid_loss, epoch)
writer.add_scalar('valid/accuracy', valid_acc, epoch)
if lr_scheduling:
lr_scheduler.step()
if check_point:
path = './runs/train/{}/weights/check_point_{:03d}.pt'.format(project_name, epoch)
cp(valid_loss, model, path)
if early_stop:
es(valid_loss, model)
if es.early_stop:
print('\n##########################\n'
'##### Early Stopping #####\n'
'##########################')
break
logger.info(f'\nTotal training time is {time.time() - start_training:.2f}s')
return {
'model': model,
'loss': loss_list,
'acc': acc_list,
'val_loss': val_loss_list,
'val_acc': val_acc_list,
}
def get_args_parser():
parser = argparse.ArgumentParser(description='Training Model', add_help=False)
# dataset parameters
parser.add_argument('--data_path', type=str, required=True,
help='data directory for training')
parser.add_argument('--normalization', action='store_true',
help='data normalization for training')
parser.add_argument('--img_size', type=int, default=224,
help='image resize size before applying cropping')
# parameter for experiment
parser.add_argument('--name', type=str, default='experiment1',
help='create a new folder')
# model parameters
parser.add_argument('--model', type=str, default='shufflenet',
choices=['shufflenet', 'mobilenet', 'efficientnet', 'resnet18', 'resnet50'],
help='classification model name')
parser.add_argument('--pretrained', action='store_true',
help='load pretrained model')
# quantization
parser.add_argument('--quantization', action='store_true',
help='model quantization')
# hyperparameters for training
parser.add_argument('--num_workers', default=8, type=int,
help='number of workers in cpu')
parser.add_argument('--batch_size', default=8, type=int,
help='batch size for training model')
parser.add_argument('--lr', default=1e-2, type=float,
help='learning rate')
parser.add_argument('--weight_decay', default=5e-4, type=float,
help='weight decay of optimizer SGD and Adam')
parser.add_argument('--epochs', default=100, type=int,
help='Epochs for training model')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum constant for SGD momentum and Adam (beta1)')
parser.add_argument('--optimizer', default='momentum', type=str,
help='set optimizer (sgd momentum and adam)')
parser.add_argument('--num_classes', default=33, type=int,
help='class number of dataset')
parser.add_argument('--lr_scheduling', action='store_true',
help='apply learning rate scheduler')
parser.add_argument('--lr_scheduler_name', default='poly', type=str,
help='learning rate scheduler')
parser.add_argument('--check_point', action='store_true',
help='save weight file when achieve the best score in validation phase')
parser.add_argument('--early_stop', action='store_true',
help='set early stopping if loss of valid is increased')
parser.add_argument('--es_patience', default=20, type=int,
help='patience to stop training by early stopping')
parser.add_argument('--train_log_step', type=int, default=40,
help='print log of iteration in training loop')
parser.add_argument('--valid_log_step', type=int, default=10,
help='print log of iteration in validating loop')
return parser
def main(args):
train_loader = load_dataloader(
path=args.data_path,
normalization=args.normalization,
img_size=args.img_size,
subset='train',
num_workers=args.num_workers,
batch_size=args.batch_size,
)
valid_loader = load_dataloader(
path=args.data_path,
normalization=args.normalization,
img_size=args.img_size,
subset='valid',
num_workers=args.num_workers,
batch_size=args.batch_size,
)
# quantization: only shufflenet and resnet
q = True if args.quantization else False
if args.model == 'mobilenet':
from models.mobilenet import MobileNetV3
model = MobileNetV3(num_classes=args.num_classes, pre_trained=args.pretrained)
logger.info('model : MobileNet!')
elif args.model == 'shufflenet':
from models.shufflenet import ShuffleNetV2
model = ShuffleNetV2(num_classes=args.num_classes, pre_trained=args.pretrained, quantize=q)
logger.info('model : ShuffleNet!')
elif args.model == 'efficientnet':
from models.efficientnet import EfficientNetV2
model = EfficientNetV2(num_classes=args.num_classes, pre_trained=args.pretrained)
logger.info('model : EfficientNet!')
elif args.model == 'resnet18':
from models.resnet import resnet18
model = resnet18(num_classes=args.num_classes, pre_trained=args.pretrained, quantize=q)
logger.info('model : ResNet18!')
elif args.model == 'resnet50':
from models.resnet import resnet50
model = resnet50(num_classes=args.num_classes, pre_trained=args.pretrained, quantize=q)
logger.info('model : ResNet50!')
else:
raise ValueError(f'{args.model} does not exists')
summary(model, (3, args.img_size, args.img_size), device='cpu')
history = training(
model=model,
train_loader=train_loader,
valid_loader=valid_loader,
lr=args.lr,
weight_decay=args.weight_decay,
epochs=args.epochs,
momentum=args.momentum,
optimizer_name=args.optimizer,
lr_scheduling=args.lr_scheduling,
lr_scheduler_name=args.lr_scheduler_name,
check_point=args.check_point,
early_stop=args.early_stop,
project_name=args.name,
train_log_step=args.train_log_step,
valid_log_step=args.valid_log_step,
es_patience=args.es_patience,
quantization=args.quantization,
)
prj_name = args.name + '_qat' if q else args.name
plot_loss_graphs(history, project_name=prj_name)
if __name__ == '__main__':
parser = argparse.ArgumentParser('Model training', parents=[get_args_parser()])
args = parser.parse_args()
main(args)