forked from sunset1995/HorizonNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayout_viewer.py
261 lines (217 loc) · 9.87 KB
/
layout_viewer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import json
import open3d
import numpy as np
from PIL import Image
from tqdm import tqdm, trange
from scipy.ndimage import map_coordinates
from misc.post_proc import np_coor2xy, np_coory2v
from misc.panostretch import pano_connect_points
def xyz_2_coorxy(xs, ys, zs, H, W):
''' Mapping 3D xyz coordinates to equirect coordinate '''
us = np.arctan2(xs, -ys)
vs = -np.arctan(zs / np.sqrt(xs**2 + ys**2))
coorx = (us / (2 * np.pi) + 0.5) * W
coory = (vs / np.pi + 0.5) * H
return coorx, coory
def create_ceiling_floor_mask(cor_id, H, W):
'''
Binary masking on equirectangular
where 1 indicate floor or ceiling
'''
# Prepare 1d ceiling-wall/floor-wall boundary
c_pts = []
f_pts = []
n_cor = len(cor_id)
for i in range(n_cor // 2):
# Ceiling boundary points
xys = pano_connect_points(cor_id[i*2],
cor_id[(i*2+2) % n_cor],
z=-50, w=W, h=H)
c_pts.extend(xys)
# Floor boundary points
xys = pano_connect_points(cor_id[i*2+1],
cor_id[(i*2+3) % n_cor],
z=50, w=W, h=H)
f_pts.extend(xys)
# Sort for interpolate
c_pts = np.array(c_pts)
c_pts = c_pts[np.argsort(c_pts[:, 0] * H - c_pts[:, 1])]
f_pts = np.array(f_pts)
f_pts = f_pts[np.argsort(f_pts[:, 0] * H + f_pts[:, 1])]
# Removed duplicated point
c_pts = np.concatenate([c_pts[:1], c_pts[1:][np.diff(c_pts[:, 0]) > 0]], 0)
f_pts = np.concatenate([f_pts[:1], f_pts[1:][np.diff(f_pts[:, 0]) > 0]], 0)
# Generate boundary for each image column
c_bon = np.interp(np.arange(W), c_pts[:, 0], c_pts[:, 1])
f_bon = np.interp(np.arange(W), f_pts[:, 0], f_pts[:, 1])
# Generate mask
mask = np.zeros((H, W), np.bool)
for i in range(W):
u = max(0, int(round(c_bon[i])) + 1)
b = min(W, int(round(f_bon[i])))
mask[:u, i] = 1
mask[b:, i] = 1
return mask
def warp_walls(equirect_texture, xy, floor_z, ceil_z, ppm):
''' Generate all walls' xyzrgba '''
H, W = equirect_texture.shape[:2]
all_rgb = []
all_xyz = []
for i in trange(len(xy), desc='Processing walls'):
next_i = (i + 1) % len(xy)
xy_a = xy[i]
xy_b = xy[next_i]
xy_w = np.sqrt(((xy_a - xy_b)**2).sum())
t_h = int(round((ceil_z - floor_z) * ppm))
t_w = int(round(xy_w * ppm))
xs = np.linspace(xy_a[0], xy_b[0], t_w)[None].repeat(t_h, 0)
ys = np.linspace(xy_a[1], xy_b[1], t_w)[None].repeat(t_h, 0)
zs = np.linspace(floor_z, ceil_z, t_h)[:, None].repeat(t_w, 1)
coorx, coory = xyz_2_coorxy(xs, ys, zs, H, W)
plane_texture = np.stack([
map_coordinates(equirect_texture[..., 0], [coory, coorx], order=1, mode='wrap'),
map_coordinates(equirect_texture[..., 1], [coory, coorx], order=1, mode='wrap'),
map_coordinates(equirect_texture[..., 2], [coory, coorx], order=1, mode='wrap'),
], -1)
plane_xyz = np.stack([xs, ys, zs], axis=-1)
all_rgb.extend(plane_texture.reshape(-1, 3))
all_xyz.extend(plane_xyz.reshape(-1, 3))
return all_rgb, all_xyz
def warp_floor_ceiling(equirect_texture, ceil_floor_mask, xy, z_floor, z_ceiling, ppm):
''' Generate floor's and ceiling's xyzrgba '''
assert equirect_texture.shape[:2] == ceil_floor_mask.shape[:2]
H, W = equirect_texture.shape[:2]
min_x = xy[:, 0].min()
max_x = xy[:, 0].max()
min_y = xy[:, 1].min()
max_y = xy[:, 1].max()
t_h = int(round((max_y - min_y) * ppm))
t_w = int(round((max_x - min_x) * ppm))
xs = np.linspace(min_x, max_x, t_w)[None].repeat(t_h, 0)
ys = np.linspace(min_y, max_y, t_h)[:, None].repeat(t_w, 1)
zs_floor = np.zeros_like(xs) + z_floor
zs_ceil = np.zeros_like(xs) + z_ceiling
coorx_floor, coory_floor = xyz_2_coorxy(xs, ys, zs_floor, H, W)
coorx_ceil, coory_ceil = xyz_2_coorxy(xs, ys, zs_ceil, H, W)
# Project view
floor_texture = np.stack([
map_coordinates(equirect_texture[..., 0], [coory_floor, coorx_floor], order=1, mode='wrap'),
map_coordinates(equirect_texture[..., 1], [coory_floor, coorx_floor], order=1, mode='wrap'),
map_coordinates(equirect_texture[..., 2], [coory_floor, coorx_floor], order=1, mode='wrap'),
], -1)
floor_mask = map_coordinates(ceil_floor_mask, [coory_floor, coorx_floor], order=0)
floor_xyz = np.stack([xs, ys, zs_floor], axis=-1)
ceil_texture = np.stack([
map_coordinates(equirect_texture[..., 0], [coory_ceil, coorx_ceil], order=1, mode='wrap'),
map_coordinates(equirect_texture[..., 1], [coory_ceil, coorx_ceil], order=1, mode='wrap'),
map_coordinates(equirect_texture[..., 2], [coory_ceil, coorx_ceil], order=1, mode='wrap'),
], -1)
ceil_mask = map_coordinates(ceil_floor_mask, [coory_ceil, coorx_ceil], order=0)
ceil_xyz = np.stack([xs, ys, zs_ceil], axis=-1)
floor_texture = floor_texture[floor_mask]
floor_xyz = floor_xyz[floor_mask]
ceil_texture = ceil_texture[ceil_mask]
ceil_xyz = ceil_xyz[ceil_mask]
return floor_texture, floor_xyz, ceil_texture, ceil_xyz
def create_occlusion_mask(xyz):
xs, ys, zs = xyz.T
ds = np.sqrt(xs**2 + ys**2 + zs**2)
# Reorder by depth (from far to close)
idx = np.argsort(-ds)
xs, ys, zs, ds = xs[idx], ys[idx], zs[idx], ds[idx]
# Compute coresponding quirect coordinate
coorx, coory = xyz_2_coorxy(xs, ys, zs, H=256, W=512)
quan_coorx = np.round(coorx).astype(int) % W
quan_coory = np.round(coory).astype(int) % H
# Generate layout depth
depth_map = np.zeros((H, W), np.float32) + 1e9
depth_map[quan_coory, quan_coorx] = ds
tol_map = np.max([
np.abs(np.diff(depth_map, axis=0, append=depth_map[[-2]])),
np.abs(np.diff(depth_map, axis=1, append=depth_map[:, [0]])),
np.abs(np.diff(depth_map, axis=1, prepend=depth_map[:, [-1]])),
], 0)
# filter_ds = map_coordinates(depth_map, [coory, coorx], order=1, mode='wrap')
# tol_ds = map_coordinates(tol_map, [coory, coorx], order=1, mode='wrap')
filter_ds = depth_map[quan_coory, quan_coorx]
tol_ds = tol_map[quan_coory, quan_coorx]
mask = ds > (filter_ds + 2 * tol_ds)
return mask, idx
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--img', required=True,
help='Image texture in equirectangular format')
parser.add_argument('--layout', required=True,
help='Txt file containing layout corners (cor_id)')
parser.add_argument('--camera_height', default=1.6, type=float,
help='Camera height in meter (not the viewer camera)')
parser.add_argument('--ppm', default=80, type=int,
help='Points per meter')
parser.add_argument('--point_size', default=0.0025, type=int,
help='Point size')
parser.add_argument('--ignore_floor', action='store_true',
help='Skip rendering floor')
parser.add_argument('--ignore_ceiling', action='store_true',
help='Skip rendering ceiling')
parser.add_argument('--ignore_wireframe', action='store_true',
help='Skip rendering wireframe')
args = parser.parse_args()
# Reading source (texture img, cor_id txt)
equirect_texture = np.array(Image.open(args.img)) / 255.0
H, W = equirect_texture.shape[:2]
with open(args.layout) as f:
inferenced_result = json.load(f)
cor_id = np.array(inferenced_result['uv'], np.float32)
cor_id[:, 0] *= W
cor_id[:, 1] *= H
ceil_floor_mask = create_ceiling_floor_mask(cor_id, H, W)
# Convert cor_id to 3d xyz
N = len(cor_id) // 2
floor_z = -args.camera_height
floor_xy = np_coor2xy(cor_id[1::2], floor_z, W, H, floorW=1, floorH=1)
c = np.sqrt((floor_xy**2).sum(1))
v = np_coory2v(cor_id[0::2, 1], H)
ceil_z = (c * np.tan(v)).mean()
# Prepare
if not args.ignore_wireframe:
assert N == len(floor_xy)
wf_points = [[x, y, floor_z] for x, y in floor_xy] +\
[[x, y, ceil_z] for x, y in floor_xy]
wf_lines = [[i, (i+1)%N] for i in range(N)] +\
[[i+N, (i+1)%N+N] for i in range(N)] +\
[[i, i+N] for i in range(N)]
wf_colors = [[1, 0, 0] for i in range(len(wf_lines))]
wf_line_set = open3d.geometry.LineSet()
wf_line_set.points = open3d.utility.Vector3dVector(wf_points)
wf_line_set.lines = open3d.utility.Vector2iVector(wf_lines)
wf_line_set.colors = open3d.utility.Vector3dVector(wf_colors)
# Warp each wall
all_rgb, all_xyz = warp_walls(equirect_texture, floor_xy, floor_z, ceil_z, args.ppm)
# Warp floor and ceiling
if not args.ignore_floor or not args.ignore_ceiling:
fi, fp, ci, cp = warp_floor_ceiling(equirect_texture, ceil_floor_mask,
floor_xy, floor_z, ceil_z,
ppm=args.ppm)
if not args.ignore_floor:
all_rgb.extend(fi)
all_xyz.extend(fp)
if not args.ignore_ceiling:
all_rgb.extend(ci)
all_xyz.extend(cp)
all_xyz = np.array(all_xyz)
all_rgb = np.array(all_rgb)
# Filter occluded points
occlusion_mask, reord_idx = create_occlusion_mask(all_xyz)
all_xyz = all_xyz[reord_idx][~occlusion_mask]
all_rgb = all_rgb[reord_idx][~occlusion_mask]
# Launch point cloud viewer
print('Showing %d of points...' % len(all_rgb))
pcd = open3d.PointCloud()
pcd.points = open3d.Vector3dVector(all_xyz)
pcd.colors = open3d.Vector3dVector(all_rgb)
# Visualize result
tobe_visualize = [pcd]
if not args.ignore_wireframe:
tobe_visualize.append(wf_line_set)
open3d.visualization.draw_geometries(tobe_visualize)