-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmAtt_bcicha.py
executable file
·46 lines (35 loc) · 1.84 KB
/
mAtt_bcicha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import torch.nn as nn
from utils.functions import trainNetwork, testNetwork, testNetwork_auc
from mAtt.mAtt import mAtt_cha
from utils.GetBCIcha import getAllDataloader
import os
import argparse
if __name__=='__main__':
ap = argparse.ArgumentParser()
ap.add_argument('--repeat', type=int, default=1, help='No.xxx repeat for training model')
ap.add_argument('--sub', type=int, default=2, help='subjectxx you want to train')
ap.add_argument('--lr', type=float, default=1e-2, help='learning rate')
ap.add_argument('--wd', type=float, default=1e-1, help='weight decay')
ap.add_argument('--iterations', type=int, default=130, help='number of training iterations')
ap.add_argument('--epochs', type=int, default=3, help='number of epochs that you want to use for split EEG signals')
ap.add_argument('--bs', type=int, default=64, help='batch size')
ap.add_argument('--model_path', type=str, default='./checkpoint/BCIcha/', help='the folder path for saving the model')
ap.add_argument('--data_path', type=str, default='./data/BCIcha/', help='data path')
args = vars(ap.parse_args())
print(f'subject{args["sub"]}')
trainloader, validloader, testloader = getAllDataloader(subject=args['sub'],
data_path=args['data_path'],
bs=args['bs'])
net = mAtt_cha(args['epochs']).cpu()
args.pop('bs')
args.pop('data_path')
trainNetwork(net,
trainloader,
validloader,
testloader,
**args
)
net = torch.load(os.path.join(args["model_path"], f'repeat{args["repeat"]}_sub{args["sub"]}_epochs{args["epochs"]}_lr{args["lr"]}_wd{args["wd"]}.pt'))
auc = testNetwork_auc(net, testloader)
print(f'{auc*100:.2f}')