-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.go
98 lines (77 loc) · 1.98 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
package main
import (
"flag"
"fmt"
"math/big"
"sync"
)
var (
zero *big.Int = big.NewInt(0)
one *big.Int = big.NewInt(1)
two *big.Int = big.NewInt(2)
mu sync.Mutex
numWorkers = 4
jobs = make(chan uint, numWorkers)
smallPrimes = [...]uint{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101}
currentP = uint(1)
)
const (
iterationsPerJob = 128
)
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
func main() {
fmt.Println("Starting to look for primes")
wg := &sync.WaitGroup{}
for i := 0; i < numWorkers; i++ {
wg.Add(1)
go spawnWorker(wg)
}
// We neved call wg.Done, so we'll just keep searching
wg.Wait()
}
func spawnWorker(wg *sync.WaitGroup) {
for {
// Reserve some primes for us to work with
mu.Lock()
initialP := currentP
currentP += iterationsPerJob
mu.Unlock()
for i := uint(0); i < iterationsPerJob; i++ {
myP := initialP + i
// Little bit of initial factoring because Lucas-Lehmer is expensive
mightBePrime := true
for j := uint(0); j < uint(len(smallPrimes)); j++ {
if myP%smallPrimes[j] == 0 {
mightBePrime = false
break
}
}
if mightBePrime && LucasLehmer(myP) {
fmt.Printf("2^%d-1 is prime\n", myP)
}
}
}
}
// p here is the same p as in 2^p-1
func LucasLehmer(p uint) (isPrime bool) {
var dummy1, dummy2 big.Int
s := big.NewInt(4)
m := big.NewInt(0)
m = m.Sub(m.Lsh(one, p), one) // = (1 << p) - 1
for i := 0; i < int(p)-2; i++ {
// This is the slower but straightforward way
//s.Mod(s.Sub(s.Mul(s, s), two), m)
// Or, use this faster way
// s here is the same as k in this part of the wikipedia page:
// https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test#Time_complexity
s = s.Sub(s.Mul(s, s), two)
for s.Cmp(m) == 1 {
// And is big's logical and, Rsh is right shift
s.Add(dummy1.And(s, m), dummy2.Rsh(s, p))
}
if s.Cmp(m) == 0 {
s = zero
}
}
return s.Cmp(zero) == 0
}