-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cross_dataset_model.py
374 lines (307 loc) · 17 KB
/
train_cross_dataset_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
import sys
import torch
import argparse
import pandas as pd
import numpy as np
from operator import le
from PIL import Image, ImageEnhance
from tqdm import tqdm
import torch.nn as nn
import torchvision.models as models
from sklearn.model_selection import KFold
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from sklearn.metrics import mean_squared_error, mean_absolute_error
import matplotlib.pyplot as plt
from torchvision import transforms
import torch.optim as optim
from modules.dataset import SingleStreamCustomDataset, TwoStreamCustomDataset
from modules.networks import *
def train_model(args, model, criterion, optimizer, train_dataloader, test_dataloader, device):
print('Starting Training...')
best_mae = float('inf')
best_model_path = os.path.join(args.checkpoint, f"{args.arch}_{args.data_type}.pth")
print(f"Saving best model to: {best_model_path}")
for epoch in range(args.num_epochs):
model.train()
total_running_loss = 0.0
# Training loop
for data in train_dataloader:
optimizer.zero_grad()
if args.data_type == 'multi':
filenames, nir_inputs, rgb_inputs, targets = data
nir_inputs, rgb_inputs = (nir_inputs.to(device), rgb_inputs.to(device))
outputs = model(nir_inputs, rgb_inputs)
else:
filenames, inputs, targets = data
inputs = inputs.to(device)
outputs = model(inputs)
targets = targets.unsqueeze(1).to(device, dtype=torch.float)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
total_running_loss += loss.item()
train_loss = total_running_loss / len(train_dataloader)
# Validation loop
model.eval()
total_val_loss = 0.0
total_mae = 0.0
val_all_actual_values, val_all_predicted_values = [], []
with torch.no_grad():
for data in test_dataloader:
if args.data_type == 'multi':
filenames, nir_inputs, rgb_inputs, targets = data
nir_inputs, rgb_inputs = (nir_inputs.to(device), rgb_inputs.to(device))
outputs = model(nir_inputs, rgb_inputs)
else:
filenames, inputs, targets = data
inputs = inputs.to(device)
outputs = model(inputs)
targets = targets.unsqueeze(1).to(device, dtype=torch.float)
loss = criterion(outputs, targets)
total_val_loss += loss.item()
actual = targets.view(-1).cpu().numpy()
predicted = outputs.view(-1).cpu().numpy()
total_mae += mean_absolute_error(actual, predicted)
val_all_actual_values.extend(actual)
val_all_predicted_values.extend(predicted)
val_loss = total_val_loss / len(test_dataloader)
val_mae = total_mae / len(test_dataloader)
print(f"Epoch [{epoch + 1}/{args.num_epochs}] - Train Loss: {train_loss:.4f} Val Loss: {val_loss:.4f} MAE: {val_mae:.4f}")
# Save best model based on MAE
if val_mae < best_mae:
best_mae = val_mae
torch.save(model.state_dict(), best_model_path)
print(f"New best model saved with MAE: {best_mae:.4f}")
print('Training completed! Best model saved at:', best_model_path)
def evaluate_model(args, model, test_dataloader, device):
# Define paths for the model and output
best_model_path = os.path.join(args.checkpoint, f"{args.arch}_{args.data_type}.pth")
output_path = os.path.join(args.checkpoint, f"{args.arch}_{args.data_type}_results.csv")
# Load the best model
model.load_state_dict(torch.load(best_model_path, map_location=device))
# Prepare to collect evaluation metrics
all_file_names = []
all_actual_values = []
all_predicted_values = []
# Set the model to evaluation mode
model.eval()
with torch.no_grad():
total_mse, total_rmse, total_mae = 0.0, 0.0, 0.0
for data in test_dataloader:
if args.data_type == 'multi':
filenames, nir_inputs, rgb_inputs, targets = data
nir_inputs, rgb_inputs = (nir_inputs.to(device), rgb_inputs.to(device))
outputs = model(nir_inputs, rgb_inputs)
else:
filenames, inputs, targets = data
inputs = inputs.to(device)
outputs = model(inputs)
targets = targets.unsqueeze(1).to(device, dtype=torch.float)
actual = targets.cpu().numpy().flatten()
predicted = outputs.cpu().numpy().flatten()
total_mse += mean_squared_error(actual, predicted)
total_rmse += np.sqrt(mean_squared_error(actual, predicted))
total_mae += mean_absolute_error(actual, predicted)
all_file_names.extend(filenames)
all_actual_values.extend(actual)
all_predicted_values.extend(predicted)
# Calculate average metrics
val_mse = total_mse / len(test_dataloader)
val_rmse = total_rmse / len(test_dataloader)
val_mae = total_mae / len(test_dataloader)
# Log the performance metrics
print('-------------------------------------')
print('--------Best Model Performance-------')
print('-------------------------------------')
print(f'MSE: {val_mse:.4f}')
print(f'RMSE: {val_rmse:.4f}')
print(f'MAE: {val_mae:.4f}')
# Save the results to a CSV file
results = pd.DataFrame({
'Filename': all_file_names,
'Actual': all_actual_values,
'Predicted': all_predicted_values
})
results.to_csv(output_path, index=False)
print(f'Results saved to {output_path}')
def main(args):
# Check GPU availability
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Current device: {device}')
# Ensure checkpoint directory exists
os.makedirs(args.checkpoint, exist_ok=True)
print(f"Checkpoint directory created: {args.checkpoint}")
# Define transformations to apply to the images
if args.arch == "inception":
trainTransform = transforms.Compose([
transforms.Resize(299),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation((-30, 30)),
transforms.ColorJitter(brightness=0.5, contrast=0.5),
transforms.Lambda(lambda img: ImageEnhance.Sharpness(img).enhance(2.0)),
transforms.ToTensor()
])
testTransform = transforms.Compose([
transforms.Resize(299),
transforms.ToTensor()
])
else:
trainTransform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomRotation((-30, 30)),
transforms.ColorJitter(brightness=0.5, contrast=0.5),
transforms.Lambda(lambda img: ImageEnhance.Sharpness(img).enhance(2.0)),
transforms.ToTensor()
])
testTransform = transforms.Compose([
transforms.ToTensor()
])
print(f'Train transform: {trainTransform}')
print(f'Test transform: {testTransform}')
# Initialize the model based on architecture and data type
if args.data_type == 'NIR':
input_channels = 1
elif args.data_type == 'RGB':
input_channels = 3
elif args.data_type == 'multi':
pass
else:
raise ValueError(f"Unsupported data type: {args.data_type}")
print(f'Data type: {args.data_type}')
print(f'Pretrained weights:{args.pretrained}')
# Define the model based on the architecture and data type
if args.data_type != 'multi': # Single stream models
if args.arch == 'alexnet':
model = CustomAlexNet(input_channels=input_channels, pretrained=args.pretrained, num_classes=1)
elif args.arch == 'vgg':
model = CustomVGG19(input_channels=input_channels, pretrained=args.pretrained, num_classes=1)
elif args.arch == 'resnet':
model = CustomResNet152(input_channels=input_channels, pretrained=args.pretrained, num_classes=1)
elif args.arch == 'inception':
model = CustomInception(input_channels=input_channels, pretrained=args.pretrained, num_classes=1)
elif args.arch == 'densenet':
model = CustomDenseNet121(input_channels=input_channels, pretrained=args.pretrained, num_classes=1)
elif args.arch == 'vit':
model = CustomViT(input_channels=input_channels, num_classes=1)
elif args.arch == 'domainresnet':
print("Loading weight from ./iris-pad-model/best_model.pth")
model = DomainResNet(input_channels=input_channels, num_classes=1, weight_path="./iris-pad-model/best_model.pth")
else:
raise ValueError(f"Unsupported model architecture: {args.arch} for single stream data type")
else: # Two-stream models for multispectral data
if args.arch == 'alexnet':
model = TwoStreamAlexNet(pretrained=args.pretrained, num_classes=1)
elif args.arch == 'vgg':
model = TwoStreamVGG(pretrained=args.pretrained, num_classes=1)
elif args.arch == 'resnet':
model = TwoStreamResNet(pretrained=args.pretrained, num_classes=1)
elif args.arch == 'inception':
model = TwoStreamInception(pretrained=args.pretrained, num_classes=1)
elif args.arch == 'densenet':
model = TwoStreamDenseNet(pretrained=args.pretrained, num_classes=1)
elif args.arch == 'vit':
model = TwoStreamViT(num_classes=1)
elif args.arch == 'domainresnet':
print("Loading weight from ./iris-pad-model/best_model.pth")
model = TwoStreamDomainResNet(num_classes=1, weight_path="./iris-pad-model/best_model.pth")
else:
raise ValueError(f"Unsupported model architecture: {args.arch} for multispectral data type")
# Move the model to the device
model = model.to(device)
print(model)
# Wrap model in DataParallel if multiple GPUs are available
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs for model parallelism.")
model = nn.DataParallel(model)
torch.backends.cudnn.enabled = True
# Load data based on data type
if args.data_type == 'NIR':
print(f'Loading {args.data_type} data...')
train_data = pd.read_csv(args.nir_train_data)
test_data = pd.read_csv(args.nir_test_data)
train_dataset = SingleStreamCustomDataset(train_data, args.nir_image_root_dir, transform=trainTransform)
test_dataset = SingleStreamCustomDataset(test_data, args.nir_image_root_dir, transform=testTransform)
print(f'Merge synthetic data:{args.merge_syn}')
if args.merge_syn:
print(f'Loading synthetic data...')
synthetic_data = pd.read_csv(args.nir_synthetic_data)
synthetic_dataset = SingleStreamCustomDataset(synthetic_data, args.nir_syn_image_root_dir, transform=trainTransform)
train_dataset = ConcatDataset([train_dataset, synthetic_dataset])
elif args.data_type == 'RGB':
print(f'Loading {args.data_type} data...')
train_data = pd.read_csv(args.rgb_train_data)
test_data = pd.read_csv(args.rgb_test_data)
train_dataset = SingleStreamCustomDataset(train_data, args.rgb_image_root_dir, transform=trainTransform)
test_dataset = SingleStreamCustomDataset(test_data, args.rgb_image_root_dir, transform=testTransform)
print(f'Merge synthetic data:{args.merge_syn}')
if args.merge_syn:
print(f'Loading synthetic data...')
synthetic_data = pd.read_csv(args.rgb_synthetic_data)
synthetic_dataset = SingleStreamCustomDataset(synthetic_data, args.rgb_syn_image_root_dir, transform=trainTransform)
train_dataset = ConcatDataset([train_dataset, synthetic_dataset])
elif args.data_type == 'multi':
print(f'Loading {args.data_type} data...')
train_data = pd.read_csv(args.multi_train_data)
test_data = pd.read_csv(args.multi_test_data)
train_dataset = TwoStreamCustomDataset(train_data, args.nir_image_root_dir, args.rgb_image_root_dir, transform=trainTransform)
test_dataset = TwoStreamCustomDataset(test_data, args.nir_image_root_dir, args.rgb_image_root_dir, transform=testTransform)
print(f'Merge synthetic data:{args.merge_syn}')
if args.merge_syn:
print(f'Loading synthetic data...')
synthetic_data = pd.read_csv(args.multi_synthetic_data)
synthetic_dataset = TwoStreamCustomDataset(synthetic_data, args.nir_syn_image_root_dir, args.rgb_syn_image_root_dir, transform=trainTransform)
train_dataset = ConcatDataset([train_dataset, synthetic_dataset])
else:
raise ValueError(f"Unsupported data type: {args.data_type}")
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
print(f'Trainset length: {len(train_loader)}')
print(f'Testset length: {len(test_loader)}')
# Define loss function and optimizer
criterion = nn.MSELoss()
if args.solver_name == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-6 if args.weight_decay else 0)
else:
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-6 if args.weight_decay else 0)
print(f'Weight decay:{args.weight_decay}')
print(f'Loss function:{criterion}')
print(f'Optimizer:{optimizer}')
# Training and evaluating model
train_model(args, model, criterion, optimizer, train_loader, test_loader, device)
evaluate_model(args, model, test_loader, device)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Iris Image-based Post-mortem Interval Estimation')
# Image Directories
parser.add_argument('--nir_image_root_dir', type=str, default='./pm-iris-dataset/', help='Root directory for NIR images')
parser.add_argument('--rgb_image_root_dir', type=str, default='./pm-iris-dataset/', help='Root directory for RGB images')
parser.add_argument('--nir_syn_image_root_dir', type=str, default='./pm-iris-dataset/', help='Root directory for synthetic NIR images')
parser.add_argument('--rgb_syn_image_root_dir', type=str, default='./pm-iris-dataset/', help='Root directory for synthetic RGB images')
# Metadata Paths
parser.add_argument('--nir_train_data', type=str, default='./train-testset/ds-disj-bal/warsaw-NIR-metadata.txt', help='Path to NIR training metadata')
parser.add_argument('--nir_test_data', type=str, default='./train-testset/ds-disj-bal/nij-NIR-metadata.txt', help='Path to NIR test metadata')
parser.add_argument('--rgb_train_data', type=str, default='./train-testset/ds-disj-bal/warsaw-RGB-metadata.txt', help='Path to RGB training metadata')
parser.add_argument('--rgb_test_data', type=str, default='./train-testset/ds-disj-bal/nij-RGB-metadata.txt', help='Path to RGB test metadata')
parser.add_argument('--multi_train_data', type=str, default='./train-testset/ds-disj-bal/warsaw-multispectral-metadata.txt', help='Path to multispectral training metadata')
parser.add_argument('--multi_test_data', type=str, default='./train-testset/ds-disj-bal/nij-multispectral-metadata.txt', help='Path to multispectral test metadata')
# Synthetic Metadata Paths
parser.add_argument('--nir_synthetic_data', type=str, default='./train-testset/synthetic.txt', help='Synthetic NIR data to merge with trainset')
parser.add_argument('--rgb_synthetic_data', type=str, default='./train-testset/synthetic.txt', help='Synthetic RGB data to merge with trainset')
parser.add_argument('--multi_synthetic_data', type=str, default='./train-testset/synthetic.txt', help='Synthetic multispectral data to merge with trainset')
parser.add_argument('--merge_syn', action='store_true', help='Merge synthetic data with trainset')
# Data Type
parser.add_argument('--data_type', type=str, choices=['RGB', 'NIR', 'multi'], default='NIR', help='Type of data being used')
# Model Parameters
parser.add_argument('--arch', type=str, default='vgg', help='Model architecture to use (e.g., vgg, resnet, etc.)')
parser.add_argument('--pretrained', action='store_true', help='Use pretrained model weights')
parser.add_argument('--solver_name', type=str, default='Adam', help='Optimizer to use (e.g., Adam, SGD)')
parser.add_argument('--batch_size', type=int, default=20, help='Batch size for training')
parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate for the optimizer')
parser.add_argument('--weight_decay', action='store_true', help='Weight decay for the optimizer')
parser.add_argument('--num_epochs', type=int, default=500, help='Number of epochs to train the model')
parser.add_argument('--checkpoint', type=str, default='./models-checkpoint/testset-warsaw/', help='Directory to save the model checkpoint')
# Parse arguments
args = parser.parse_args()
# Call the main function with parsed arguments
main(args)