-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathState.py
489 lines (412 loc) · 22.6 KB
/
State.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
from __future__ import print_function
import os.path
import utils
import numpy as np
import pickle
import copy
from bidict import bidict
from google.cloud import storage
import io
class StaffMember:
"""
Represents an individual course staff member
"""
# Indices of the data in the availabilities spreadsheet. WARNING: If the form is changed,
# these indices must be updated.
EMAIL_ADDRESS_INDEX = 0
APPOINTED_POSITION_INDEX = 1
TOTAL_WEEKLY_HOURS_INDEX = 2 # the number of hours per week a staff member's total appointment is
SEMESTERS_ON_STAFF_INDEX = 3
SEMESTER_AS_AI_INDEX = 4
WEEKLY_OH_HOURS_INDEX = 5
PREFERRED_CONTIGUOUS_HOURS_INDEX = 6
AVAILABILITIES_INDICES = range(7, 67) # 5 * 12 slots
def __init__(self, data_row, weeks_left):
"""Initializes a new StaffMember object.
Instance Attributes:
email (string): The email address of the course staff member.
weekly_oh_hours (int): The number of office hours the course staff member is expected to work per week.
preferred_contiguous_hours (int): The number of contiguous hours the course staff member prefers to work.
availabilities (np.array): A 5x12 np array of the course staff member's availabilities.
assigned_hours (np.array): A 5x12 np array of the course staff member's
assigned hours. Assigned only after the algorithm is run.
staff member this semester.
NOTE: The following aren't used, and are here for future reference:
appointed_position (string): The appointed position of the course staff member.
total_weekly_hours (int): The total number of hours the course staff member is expected to work per week.
semesters_on_staff (int): The number of semesters the course staff member has been on staff.
semesters_as_ai (int): The number of semesters the course staff member has been an AI.
Args:
data_row (list): A row from the availabilities spreadsheet. The
first element is the email address, and the rest are relevant data.
The indices of the row that correspond to the availabilities,
preferred hours, appointed hours, etc. are specified as class variables.
weeks_left (int): The number of weeks left in the semester, INCLUDING the week this state is made for.
"""
self.email = data_row[StaffMember.EMAIL_ADDRESS_INDEX]
self.weekly_oh_hours = int(data_row[StaffMember.WEEKLY_OH_HOURS_INDEX])
self.preferred_contiguous_hours = int(data_row[StaffMember.PREFERRED_CONTIGUOUS_HOURS_INDEX])
# Extract number from availabilities list and reshape
availabilities_list = [data_row[i] for i in StaffMember.AVAILABILITIES_INDICES]
self.availabilities = utils.create_5x12_np_array(availabilities_list)
# To be filled by the algorithm after it's done running
self.assigned_hours = None
self.hours_left = self.weekly_oh_hours * weeks_left
# The following aren't used, and are here for future reference
self.appointed_position = data_row[StaffMember.APPOINTED_POSITION_INDEX]
self.total_weekly_hours = int(data_row[StaffMember.TOTAL_WEEKLY_HOURS_INDEX])
self.semesters_on_staff = int(data_row[StaffMember.SEMESTERS_ON_STAFF_INDEX])
self.semesters_as_ai = int(data_row[StaffMember.SEMESTER_AS_AI_INDEX])
def update(self, data_row, weeks_left):
"""Updates the information for a course staff.
Args:
new_row (list): A row from the availabilities spreadsheet.
weeks_left (int): The number of weeks left in the semester, INCLUDING the week this state is made for.
"""
if data_row[StaffMember.EMAIL_ADDRESS_INDEX] != self.email:
raise Exception("Email addresses do not match")
# Replace old data with no special instructions
self.appointed_position = data_row[StaffMember.APPOINTED_POSITION_INDEX]
self.total_weekly_hours = int(data_row[StaffMember.TOTAL_WEEKLY_HOURS_INDEX])
self.semesters_on_staff = int(data_row[StaffMember.SEMESTERS_ON_STAFF_INDEX])
self.semesters_as_ai = int(data_row[StaffMember.SEMESTER_AS_AI_INDEX])
self.preferred_contiguous_hours = int(data_row[StaffMember.PREFERRED_CONTIGUOUS_HOURS_INDEX])
new_hours = int(data_row[StaffMember.WEEKLY_OH_HOURS_INDEX])
if new_hours != self.weekly_oh_hours:
self.weekly_oh_hours = new_hours
# If the weekly OH hours have changed, update the hours left
self.hours_left = new_hours * weeks_left
if hasattr(self, "oh_hours_adjustments"):
self.hours_left += self.oh_hours_adjustments
# Reshape availabilities list
availabilities_list = [data_row[i] for i in StaffMember.AVAILABILITIES_INDICES]
self.availabilities = utils.create_5x12_np_array(availabilities_list)
def set_assignment(self, assignment):
"""
Given an np_array of size 5x12, representing the assignment for this
week, sets the assignment for this StaffMember and decreases their
remaining hours. This should be run once per state after the algorithm
is finished running.
Args:
assignment (np.array): 5x12 np array representing this staff's assignment for the week.
"""
# if not self.assigned_hours is None:
# raise Exception("Assigned hours already set.")
self.assigned_hours = assignment
self.hours_left -= np.sum(assignment)
def adjust_oh_hours(self, adjustment):
"""
Adjusts the weekly OH hours for this staff member by the given amount.
Args:
adjustment (int): hours to add/decrease
"""
if not hasattr(self, "oh_hours_adjustments"):
self.oh_hours_adjustments = 0
self.oh_hours_adjustments += adjustment
self.hours_left += adjustment
def calculate_availabilities_difference(self, other_availability):
"""
Calculates the difference between this StaffMember's availabilities and
another availabilities array. The difference is defined with this formula:
Convert both availabilities matrices to boolean values: (1-4 is 1, 5 is
0). Let X' be the input availabilities and X be the staff's
availabilities. Return (X - X').sum((1, 2)). The difference is then divided
by the boolean sum of the other_availability matrix.
TODO: change the docstring
Args:
other_availability (np_array): The other availabilities array to compare to.
Returns:
difference (int): The difference score, defined by (X - X').sum((1, 2))/sum(X')
"""
this_converted = np.where(self.availabilities == 5, 0, 1)
other_converted = np.where(other_availability == 5, 0, 1)
if other_converted.sum() == 0:
return 1
return np.sum(np.maximum(other_converted - this_converted, 0))/np.sum(other_converted)
def __str__(self) -> str:
info = "StaffMember Object:\n"
info += "Email: {}\n".format(self.email)
info += "Weekly Office Hours: {}\n".format(self.weekly_oh_hours)
info += "Preferred Contiguous Hours: {}\n".format(self.preferred_contiguous_hours)
info += "Availabilities:\n{}\n".format(self.availabilities)
info += "Assigned Hours:\n{}\n".format(self.assigned_hours)
info += "Appointed Position: {}\n".format(self.appointed_position)
info += "Total Weekly Hours: {}\n".format(self.total_weekly_hours)
info += "Semesters on Staff: {}\n".format(self.semesters_on_staff)
info += "Semesters as AI: {}\n".format(self.semesters_as_ai)
return info
class State:
"""
An internal state object for storing relevant information between runs.
There should be one state for each week that this algorithm has been run.
The state's week number (and name) represents the week that this state is being run for,
e.g. the upcoming week for which the algorithm is run for.
"""
def __init__(self, prev, oh_demand, availabilities, class_name, semester, total_weeks, max_weekly_multiplier, weeks_skipped):
"""Initializes a new state object
Args:
prev (string, optional): location to the previous serialized State structure (None if this is the first week). Defaults to None.
oh_demand (np array): (total weeks - weeks_skipped)x5x12 np array representing the demand for office hours for all weeks.
availabilities_sheet (string):
intermediate_folder (string):
class_name (_type_): _description_
semester (_type_): _description_
total_weeks (_type_): _description_
max_weekly_multiplier (_type_): _description_
Instance Variables:
prev_state (state): List of all previous State objects.
week_num (int): The current week this State object represents.
weeks_remaining (int): The number of weeks remaining in the semester, including this week.
state_df (pd.DataFrame): Dataframe with the following columns:
- Email address
- Availability (Np array of shape (5, 12))
- # of allotted hours remaining
- this_weeks_assignments (Np array of shape (# of staff, 5, 12) representing the assignments for this week)
If assignments haven't been calculated yet, this will be None.
non_day_ones (list): Email addresses of staff members who were not originally added to the algorithm for the first week.
rows_parsed (int): The number of rows from the availabilities sheet values visited so far.
Returns:
state: state object with pertinent information filled in
"""
# If prev is None, this is the first state object.
if not prev:
self.prev_state = None
self.week_num = weeks_skipped + 1
self.weeks_remaining = total_weeks - weeks_skipped
self.course_staff_dict = {}
self.bi_mappings = bidict({})
self.rows_parsed = 0
self.update(availabilities, self.weeks_remaining)
self.day_ones = len(self.course_staff_dict)
else:
self.prev_state = prev
self.week_num = prev.week_num + 1
self.weeks_remaining = prev.weeks_remaining - 1
self.rows_parsed = prev.rows_parsed
self.course_staff_dict = copy.deepcopy(prev.course_staff_dict)
self.bi_mappings = copy.deepcopy(prev.bi_mappings)
self.day_ones = prev.day_ones
# update availabilities dataframe
self.update(availabilities, self.weeks_remaining)
self.oh_demand = oh_demand
self.max_weekly_multiplier = max_weekly_multiplier
self.class_name = class_name
self.semester = semester
self.weeks_skipped = weeks_skipped
return None
def update(self, availabilities, weeks_remaining):
"""Given the staff availabilities sheet, update state and each course staff.
Args:
availabilities (list): list of lists, each list representing a student in the availabilities sheet.
weeks_remaining (int): the number of weeks left in the semester including the week this state is made for.
"""
self.rows_parsed = 0 # TODO: fix 9.02.2023
# Update each student after last_parsed_row
# new_form_submissions = availabilities[self.rows_parsed:] #TODO: fix 9.02.2023
new_form_submissions = availabilities
latest_form_submissions = utils.filter_last_row_by_email(new_form_submissions)
for student_list in latest_form_submissions:
# Extract email address
email = student_list[StaffMember.EMAIL_ADDRESS_INDEX]
# If the email address is not in mappings, create a new student, mappings, and add to list
if email not in self.course_staff_dict:
staff = StaffMember(student_list, weeks_remaining)
self.course_staff_dict[email] = staff
self.bi_mappings[email] = len(self.course_staff_dict) - 1
else:
# Update the corresponding student.
self.course_staff_dict[email].update(student_list, weeks_remaining)
self.rows_parsed += 1 # TODO: not used, kept for history
def set_assignments(self, assignments):
"""Sets the assignments for this week, decreases the hours left for each staff member.
Args:
assignments (np.array): Np array of shape (# of staff, 5, 12) representing the assignments for this week.
Each row's index should match up with bi_mappings for which staff member it refers to
"""
if assignments.shape[0] != len(self.course_staff_dict):
raise ValueError("Assignments length does not match number of staff members. {} != {}".format(assignments.shape[0], len(self.course_staff_dict)))
for i in range(len(assignments)):
assignment = assignments[i]
staff_email = self.bi_mappings.inverse[i]
self.course_staff_dict[staff_email].set_assignment(assignment)
def get_day_one_assignments(self):
"""Returns all past assignments of day one staff members
Returns:
np.array: Np array of shape (# of day one staff, # of previous weeks, 5, 12)
representing the assignments for each previous week.
"""
results = []
current = self.prev_state
if not current:
return np.array([])
while current:
assignments = []
for i in range(self.day_ones):
staff_email = current.bi_mappings.inverse[i]
if staff_email != self.bi_mappings.inverse[i]:
raise ValueError("mappings do not match up between states")
staff = current.course_staff_dict[staff_email]
assignments.append(staff.assigned_hours)
results.append(np.stack(np.array(assignments), axis=0))
current = current.prev_state
results = np.array(results)
if len(results) > 1:
results = np.stack(np.array(results), axis=0)
if results.shape != (self.week_num - self.weeks_skipped - 1, self.day_ones, 5, 12):
raise ValueError("results shape does not match up with expected shape. {} != {}".format(results.shape, (self.week_num - self.weeks_skipped - 1, self.day_ones, 5, 12)))
return np.swapaxes(results, 0, 1)
def get_course_staff(self, email):
"""
Returns:
StaffMember: StaffMember object corresponding to the given email
"""
return self.course_staff_dict[email]
def get_algo_inputs(self):
"""
Returns:
list: list of all inputs required for the algorithm:
- OH demand np array (np_array [# future weeks, 5, 12]):
- Most up-to-date version of the OH demand spreadsheet output for all weeks in the future INCLUDING the week this state is made for.
- Prev_assignments: (np_array[# of day one staff, # of past states, 5, 12]):
- Availabilities (np_array[# all staff, 5, 12]):
- Max_contiguous_hours (np_array[# all staff]):
- Target_total_future_hours (np_array[# all staff]):
- weekly_target_hours (np_array[# all staff])
- preferred_contiguous_hours(np_array[# all staff]):
- changed_hours_weightings(np_array[# of day one staff]):
- Non_day_one_indices:(np_array[# of non-day-one staff])
"""
future_oh_demand = self.oh_demand.take(list(range(self.week_num - 1, self.week_num + self.weeks_remaining - 1)), axis=0)
# run sanity check on indices
self.validate_mappings()
# collect each state's staff assignments
previous_assignments = self.get_day_one_assignments()
current_availabilities = np.array([None] * len(self.course_staff_dict))
for email in self.bi_mappings:
index = self.bi_mappings[email]
current_availabilities[index] = self.course_staff_dict[email].availabilities
if len(current_availabilities) > 1:
current_availabilities = np.stack(current_availabilities)
max_contiguous_hours = np.array([None] * len(self.course_staff_dict))
preferred_contiguous_hours = np.array([None] * len(self.course_staff_dict))
weekly_target_hours = np.array([None] * len(self.course_staff_dict))
for email in self.bi_mappings:
index = self.bi_mappings[email]
max_contiguous_hours[index] = self.course_staff_dict[email].weekly_oh_hours * self.max_weekly_multiplier
preferred_contiguous_hours[index] = self.course_staff_dict[email].preferred_contiguous_hours
weekly_target_hours[index] = self.course_staff_dict[email].weekly_oh_hours
if len(self.course_staff_dict) > 1:
max_contiguous_hours = np.stack(max_contiguous_hours)
preferred_contiguous_hours = np.stack(preferred_contiguous_hours)
weekly_target_hours = np.stack(weekly_target_hours)
# hours left = new_weekly_target * total weeks - prev assignments
# get total weeks from first state
# get total weeks from first state
current = self
while current.prev_state:
current = current.prev_state
total_weeks = current.weeks_remaining
target_total_future_hours = np.array([None] * len(self.course_staff_dict))
for email in self.course_staff_dict:
index = self.bi_mappings[email]
target_total_future_hours[index] = self.course_staff_dict[email].hours_left
if self.prev_state:
changed_hours_weightings = np.array([None] * self.day_ones)
for i in range(self.day_ones):
email = self.bi_mappings.inverse[i]
changed_hours_weightings[i] = self.course_staff_dict[email].calculate_availabilities_difference(self.prev_state.course_staff_dict[email].availabilities)
if len(changed_hours_weightings) > 1:
changed_hours_weightings = np.stack(changed_hours_weightings)
else:
changed_hours_weightings = np.array([0] * self.day_ones)
non_day_one_indices = np.array(list(range(self.day_ones, len(self.course_staff_dict))))
return [
future_oh_demand,
previous_assignments,
current_availabilities,
max_contiguous_hours,
target_total_future_hours,
weekly_target_hours,
preferred_contiguous_hours,
changed_hours_weightings,
non_day_one_indices,
]
def validate_mappings(self):
"""
As having wrong bi_mappings results in invisible bugs, this function is used to check that the bi_mappings are correct.
Through comparing the bi_mappings to the all prev_state bi_mappings.
"""
prev = self.prev_state
while prev:
for email in self.bi_mappings:
# Must be a new email, skip.
if email not in prev.bi_mappings:
continue
if prev.bi_mappings[email] != self.bi_mappings[email]:
print(f"Email: {email}. old id {prev.bi_mappings[email]}. new id {self.bi_mappings[email]}")
raise ValueError("bi_mappings do not match up between states. Stop.")
prev = prev.prev_state
def serialize(self, project_id, bucket_name, prefix=None):
"""Saves this object using pickle. Prev_state should not be referenced while this is serializing.
As all previous states are deserialized as a result of this state being serialized, we recursively
serialize each previous state as well.
Returns:
None
"""
place_holder = self.prev_state
self.prev_state = None
object_name = '{}/{}.pkl'.format(prefix, self.week_num)
# Initialize a Google Cloud Storage client
storage_client = storage.Client(project=project_id)
bucket = storage_client.get_bucket(bucket_name)
try:
blob = storage.Blob(object_name, bucket)
blob.delete()
except Exception as e:
print(f"Creating new blob for state {self.week_num}")
try:
# Pickle the Python object to a byte stream
byte_stream = io.BytesIO()
pickle.dump(self, byte_stream)
# Reset stream position to the beginning and upload
byte_stream.seek(0)
blob = bucket.blob(object_name)
blob.upload_from_file(byte_stream)
print(f"File uploaded successfully for state {self.week_num}")
except Exception as e:
raise RuntimeError(f"Something went wrong while serializing state #{self.week_num}. Error: {str(e)}")
finally:
self.prev_state = place_holder
def __str__(self):
prev_state_str = str(self.prev_state.week_num) if self.prev_state else "None"
email_keys = list(self.course_staff_dict.keys())
bi_mappings_str = str(dict(self.bi_mappings)) + ", Inverse: " + str(dict(self.bi_mappings.inverse))
oh_demand_str = np.array2string(self.oh_demand, precision=2, separator=',', suppress_small=True)
return (
f"Class name: {self.class_name}\n"
f"Semester: {self.semester}\n"
f"Previous state: {prev_state_str}\n"
f"Week number: {self.week_num}\n"
f"Weeks remaining: {self.weeks_remaining}\n"
f"Course staff email keys: {email_keys}\n"
f"Bi-directional mappings: {bi_mappings_str}\n"
f"Rows parsed: {self.rows_parsed}\n"
f"Day ones: {self.day_ones}\n"
f"OH demand: {oh_demand_str}\n"
f"Max weekly multiplier: {self.max_weekly_multiplier}\n"
)
def print_algo_outputs(self):
values = self.get_algo_inputs()
for i in range(len(values)):
values[i] = np.array2string(values[i], precision=2, separator=',', suppress_small=True)
print(
f"OH demand: {values[0]}\n",
f"Previous assignments: {values[1]}\n",
f"Availabilities: {values[2]}\n",
f"Max hours: {values[3]}\n",
f"Hours remaining: {values[4]}\n",
f"Weekly target hours: {values[5]}\n"
f"Preferred contiguous hours: {values[6]}\n",
f"Changed hours: {values[7]}\n",
f"Non day one indices: {values[8]}\n"
)