Skip to content

Latest commit

 

History

History
108 lines (91 loc) · 4.05 KB

File metadata and controls

108 lines (91 loc) · 4.05 KB

Data Processing Pipeline

A project that leverages big data and containerization tools to achieve an easy-to-setup big data processing system. Demonstrate uses of the following:

  • Spark (Structured Streaming) - a scalable stream processing engine
  • Flink - a stateful stream processing engine
  • Hive - SQL-like interface to enable query on HDFS data
  • Kafka - a distributed event streaming platform
  • HBase (Paired with Caffeine Cache) - a non-relational distributed database for quick real-time query
  • Druid - a column-oriented distributed real-time analysis database
  • Docker - an application containerization platform

1. Change directory

cd docker

2. Command to start the pipeline

sh project-runner.sh <start | stop> [optional processing_platform] [optional job_name] [optional resource_path] [optional kafka_start_time] [optional kafka_end_time] |
  • <start | stop> - start or stop all docker container
  • <processing_platform> - flink or spark. e.g, flink/spark. Default is set to be 'spark'
  • <job_name> - optional processing job class name. e.g, Txn/TxnUser. Default is set to be 'Txn'
  • <resource_path> optional job configuration file name. e.g, txn.conf/txn_user.conf. Default is set to be txn.conf
  • <kafka_start_time> optional Kafka consumption start time (millisecond, second will get converted). e.g, 1643441056000. Default is set to be -1
  • <kafka_end_time> optional Kafka consumption end time (millisecond, second will get converted). e.g, 1643441056000. Default is set to be -1
2.1. Command to start the Spark Txn pipeline
sh project-runner.sh start spark Txn txn.conf 
2.2. Command to start the Spark TxnUser pipeline
sh project-runner.sh start spark TxnUser txn_user.conf
2.3. Command to start the Flink Txn pipeline
sh project-runner.sh start flink FlinkTxn flink_txn.conf

Note that there is a known bug in Kafka 2.3.0 when the checkpoint mechanism is enabled in the Flink processing pipeline - the Flink job throws exception 'org.apache.kafka.common.errors.UnknownProducerIdException' when a streams application has little traffic. Reader may refer to the questions posted on StackOverflow

3. Command to view Kafka data

docker container exec -it project_kafka_broker /bin/bash
kafka-console-consumer --bootstrap-server broker:9092 --topic <order | txn | txn_user>

docker container exec -it project_kafka_broker bash -c "kafka-console-consumer --bootstrap-server broker:9092 --topic txn"

4. Command to read from Druid datasource

Two ways to get the metrics from the Druid datasource:

  • Submit native query via curl
    DRUID_QUERY_JSON="./druid_txn_query.json"
    
    DRUID_QUERY_JSON="./druid_txn_user_query.json"
    
    query=$(cat $DRUID_QUERY_JSON | sed "s/start_time/$(date +"%Y-%m-%d")T00:00:00+08:00/" | sed "s/end_time/$(date -v +1d +"%Y-%m-%d")T00:00:00+08:00/")
    
    curl -X POST \
      http://localhost:8889/druid/v2/?pretty \
      -H 'cache-control: no-cache' \
      -H 'content-type: application/json' \
      -d "$query"
    
  • Submit SQL query via Druid UI
    SELECT 
      country, SUM("gmv") AS gmv_sum, SUM("gmv_usd") AS gmv_usd_sum, SUM("count") AS order_count
    FROM txn
    GROUP BY country
    
    
    SELECT
    country, SUM("count") AS user_count
    FROM txn_user
    GROUP BY country
    
    Txn query Txn_user query

5. Command to stop the pipeline

sh project-runner.sh stop

6. User Interface

7. Dependencies