forked from aghie/LyS-FASTPARSE
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
176 lines (141 loc) · 8.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from argparse import ArgumentParser
import lysfastparse.utils
import lysfastparse.bcovington.utils_bcovington
import lysfastparse.bcovington.covington
import os
import pickle
import time
import tempfile
import yaml
import codecs
import sys
import warnings
"""
Main file
"""
#YAML ATTRIBUTES
YAML_UDPIPE = "udpipe"
YAML_PERL_EVAL = "perl_eval"
YAML_CONLL17_EVAL = "conll17_eval"
YAML_UDPIPE_MODELS = "udpipe_models"
YAML_FASTTEXT = "fasttext"
#INPUT TYPES
INPUT_RAW = "raw"
INPUT_CONLLU = "conllu"
#AVAILABLE PIPELINES
PIPELINE_UDPIPE = "UDpipe"
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--input", dest="input", help="Path to the input file",default=None)
parser.add_argument("--input_type", dest="input_type",help="Style of the input file [raw|conllu] (only use with --predict)")
parser.add_argument("--pipe", dest="pipe",default="UDpipe",help="Framework used to do the pipeline. Only \"UDpipe\" supported (only use with --predict)")
parser.add_argument("--train", dest="conll_train", help="Annotated CONLL train file", metavar="FILE", default="../data/PTB_SD_3_3_0/train.conll")
parser.add_argument("--dev", dest="conll_dev", help="Annotated CONLL dev file", metavar="FILE", default="../data/PTB_SD_3_3_0/dev.conll")
parser.add_argument("--test", dest="conll_test", help="Annotated CONLL test file", metavar="FILE", default="../data/PTB_SD_3_3_0/test.conll")
parser.add_argument("--params", dest="params", help="Parameters file", metavar="FILE", default="params.pickle")
parser.add_argument("--extrn", dest="external_embedding", help="External embeddings", metavar="FILE")
parser.add_argument("--extrn_cpos", dest="cpos_external_embedding",help="CPoStag external embeddings", metavar="FILE")
parser.add_argument("--extrn_pos", dest="pos_external_embedding", help= "PoStag external embeddings", metavar="FILE")
parser.add_argument("--extrn_feats", dest="feats_external_embedding", help="Feats external embeddings", metavar="FILE")
parser.add_argument("--model", dest="model", help="Load/Save model file", metavar="FILE", default="bcovington.model")
parser.add_argument("--wembedding", type=int, dest="wembedding_dims", default=100)
parser.add_argument("--pembedding", type=int, dest="pembedding_dims", default=25)
parser.add_argument("--rembedding", type=int, dest="rembedding_dims", default=25)
parser.add_argument("--epochs", type=int, dest="epochs", default=30)
parser.add_argument("--hidden", type=int, dest="hidden_units", default=100)
parser.add_argument("--hidden2", type=int, dest="hidden2_units", default=0)
parser.add_argument("--kb", type=int, dest="window_b", default=1)
parser.add_argument("--k1", type=int, dest="window_l1", default=3)
parser.add_argument("--k2r", type=int, dest="window_l2r", default = 1)
parser.add_argument("--k2l", type=int, dest="window_l2l", default = 1)
parser.add_argument("--lr", type=float, dest="learning_rate", default=0.1)
parser.add_argument("--outdir", type=str, dest="output", default="results")
parser.add_argument("--activation", type=str, dest="activation", default="tanh")
parser.add_argument("--optimizer",type=str, dest="optimizer", default="adam")
parser.add_argument("--lstmlayers", type=int, dest="lstm_layers", default=2)
parser.add_argument("--lstmdims", type=int, dest="lstm_dims", default=125)
parser.add_argument("--dynet-seed", type=int, dest="seed", default=7)
parser.add_argument("--disableoracle", action="store_false", dest="oracle", default=True)
parser.add_argument("--disableblstm", action="store_false", dest="blstmFlag", default=True)
parser.add_argument("--bibi-lstm", action="store_true", dest="bibiFlag", default=False)
parser.add_argument("--usehead", action="store_true", dest="headFlag", default=False)
parser.add_argument("--userlmost", action="store_true", dest="rlFlag", default=False)
parser.add_argument("--userl", action="store_true", dest="rlMostFlag", default=False)
parser.add_argument("--dynet-mem", type=int, dest="cnn_mem", default=512)
parser.add_argument("--udpipe_model", dest="udpipe_model", help="Path to the UDpipe for the given language",metavar="FILE")
parser.add_argument("--conf", metavar="FILE", dest="conf",required=True)
args = parser.parse_args()
if not os.path.exists(args.output):
os.mkdir(args.output)
config = yaml.safe_load(open(args.conf))
#PARSING WITH NEURAL COVINGTON
print "Training..."
if not (args.rlFlag or args.rlMostFlag or args.headFlag):
print 'You must use either --userlmost or --userl or --usehead (you can use multiple)'
sys.exit()
# TODO: See how to take advantage of OOOV embeddings from fasttetx
# if os.path.exists(args.external_embedding_FBbin):
#
# path_tmp_file_oov = lysfastparse.utils.get_OOV_words_from_conll(config[YAML_FASTTEXT], args.external_embedding_FBbin,
# args.external_embedding,words)
# else:
# path_tmp_file_oov = None
path_tmp_file_oov = None
#
# with open(args.output+os.sep+args.params, 'r') as paramsfp:
# aux = pickle.load(paramsfp)
# words, w2i, lemmas, l2i, cpos , pos, feats, rels, stored_opt = aux
#
#
# stored_opt.external_embedding = args.external_embedding
# stored_opt.pos_external_embedding = args.pos_external_embedding
# stored_opt.cpos_external_embedding = args.pos_external_embedding
# stored_opt.feats_external_embedding = args.pos_external_embedding
# stored_opt.lemmas_external_embedding = args.lemmas_external_embedding
#
# print stored_opt
#
# parser = lysfastparse.bcovington.covington.CovingtonBILSTM(words, lemmas, cpos, pos, feats, rels, w2i, l2i, stored_opt,
# None, args.load_existing_model)
# parser.Load(args.output+os.sep+args.model)
#
# else:
#
print 'Preparing vocab'
words, w2i, lemmas, l2i, cpos, pos, feats, rels = lysfastparse.bcovington.utils_bcovington.vocab(args.conll_train)
better_las = 0
with open(os.path.join(args.output, args.params), 'w') as paramsfp:
pickle.dump((words, w2i, lemmas, l2i, cpos, pos, feats, rels, args), paramsfp)
print 'Finished collecting vocab'
print 'Initializing blstm covington:'
parser = lysfastparse.bcovington.covington.CovingtonBILSTM(words, lemmas, cpos, pos, feats, rels, w2i, l2i, args,
path_tmp_file_oov)
if path_tmp_file_oov is not None:
os.unlink(path_tmp_file_oov)
with codecs.open(args.conll_dev) as f_conll_dev:
lookup_conll_data = lysfastparse.utils.lookup_conll_extra_data(f_conll_dev)
log_results_file = codecs.open(os.path.join(args.output.rsplit("/",1)[0], args.output.rsplit("/",1)[1]+'.dev_results'),"a")
for epoch in xrange(args.epochs):
print 'Starting epoch', epoch
parser.Train(args.conll_train)
devpath = os.path.join(args.output, 'dev_epoch_' + str(epoch+1) + '.conll')
lysfastparse.bcovington.utils_bcovington.write_conll(devpath, parser.Predict(args.conll_dev))
lysfastparse.utils.dump_lookup_extra_into_conll(devpath, lookup_conll_data)
lysfastparse.utils.transform_to_single_root(devpath)
print 'Executing conll17_eval'
os.system('python '+config[YAML_CONLL17_EVAL]+' '+args.conll_dev + ' '+devpath+ ' > ' + devpath + '.txt ')
with codecs.open(devpath+".txt") as f_devpath:
content = f_devpath.readlines()
las_lines = [l for l in content if
l.startswith("LAS F1 Score")]
if len(las_lines) != 1:
warnings.warn("Cannot determine LAS F1 Score from file")
else:
las = float(las_lines[0].split(":")[1])
log_results_file.write('\t'.join([args.output.rsplit("/",1)[1],str(epoch),"\n".join(content)]))
print 'Finished predicting dev'
#Only saves the best performing model
if las >= better_las:
parser.Save(os.path.join(args.output, args.model))
better_las = las
log_results_file.close()