-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_architecture.py
160 lines (137 loc) · 4.61 KB
/
test_architecture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
Test an architecture, it is only checked for errors and dimensions. The
functionality is not evaluated.
"""
import tempfile
from pathlib import Path
from typing import Any, Dict
import tensorflow as tf
import seg_data_loader
from SegClassRegBasis import architecture
from SegClassRegBasis import config as cfg
from SegClassRegBasis.test_seg_data_loader import (
get_loader,
load_dataset,
set_parameters_according_to_dimension,
set_seeds,
)
if __name__ == "__main__":
test_dir = Path("test_data")
DEBUG = False # some behavior might change
DIMENSION = 2
N_EPOCHS = 100
NETWORK = architecture.DeepLabv3plus
PREPROCESSED_DIR = test_dir / f"{cfg.num_channels}_channels" / "data_preprocessed"
NUM_CHANNELS = 3
cfg.num_channels = NUM_CHANNELS
if DEBUG:
tf.debugging.enable_check_numerics(stack_height_limit=60, path_length_limit=100)
F_BASE = 8
# define the parameters that are constant
train_parameters = {
"l_r": 0.001,
"optimizer": "Adam",
"epochs": N_EPOCHS,
# scheduling parameters
"early_stopping": True,
"patience_es": 15,
"reduce_lr_on_plateau": True,
"patience_lr_plat": 5,
"factor_lr_plat": 0.5,
# sampling parameters
"samples_per_volume": 80,
"background_label_percentage": 0.15,
# Augmentation parameters
"add_noise": False,
"max_rotation": 0,
"min_resolution_augment": 1,
"max_resolution_augment": 1,
}
constant_parameters = {
"train_parameters": train_parameters,
"loss": "DICE",
}
# define constant parameters
hyper_parameters: Dict[str, Any] = {
**constant_parameters,
}
network_parameters_UNet = {
"regularize": [True, "L2", 1e-5],
"drop_out": [True, 0.01],
"activation": "elu",
"cross_hair": False,
"clipping_value": 1,
"res_connect": True,
"n_filters": [F_BASE * 8, F_BASE * 16, F_BASE * 32, F_BASE * 64, F_BASE * 128],
"do_bias": True,
"do_batch_normalization": False,
}
network_parameters_DenseTiramisu = {
"regularize": [True, "L2", 1e-5],
"drop_out": [True, 0.01],
"activation": "elu",
"cross_hair": False,
"clipping_value": 1,
"layers_per_block": (4, 5, 7, 10, 12),
"bottleneck_layers": 15,
"growth_rate": 16,
"do_bias": False,
"do_batch_normalization": True,
}
hyper_parameters["network_parameters"] = network_parameters_DenseTiramisu
hyper_parameters["dimensions"] = DIMENSION
hyper_parameters["train_parameters"]["percent_of_object_samples"] = 0.4
set_parameters_according_to_dimension(
DIMENSION, NUM_CHANNELS, PREPROCESSED_DIR, NETWORK.get_name()
)
set_seeds()
# generate loader
data_loader = get_loader("train", seg_data_loader)
file_list, _, file_dict = load_dataset(test_dir)
cfg.num_files = len(file_list) - cfg.number_of_vald
train_dataset = data_loader(
file_list[: -cfg.number_of_vald],
batch_size=cfg.batch_size_train,
n_epochs=N_EPOCHS,
read_threads=cfg.train_reader_instances,
file_dict=file_dict,
)
valid_dataset = data_loader(
file_list[-cfg.number_of_vald :],
batch_size=cfg.batch_size_train,
n_epochs=N_EPOCHS,
read_threads=cfg.train_reader_instances,
file_dict=file_dict,
)
visualization_dataset = data_loader(
file_list[:1],
batch_size=cfg.batch_size_train,
n_epochs=N_EPOCHS,
read_threads=cfg.train_reader_instances,
)
# do training
with tempfile.TemporaryDirectory() as tempdir, tf.device("/device:GPU:0"):
fold_dir = Path(tempdir) / "fold-0"
if not (fold_dir).exists():
fold_dir.mkdir()
net = NETWORK(
hyper_parameters["loss"],
debug=DEBUG,
# add initialization parameters
**hyper_parameters["network_parameters"],
)
net.model.summary(line_length=150)
# generate tensorflow command
tensorboard_command = f'tensorboard --logdir="{tempdir}"'
print(f"To see the progress in tensorboard, run:\n{tensorboard_command}")
net.train(
logs_path=tempdir,
folder_name=fold_dir.name,
training_dataset=train_dataset,
validation_dataset=valid_dataset,
visualization_dataset=visualization_dataset,
write_graph=True,
debug=DEBUG,
# add training parameters
**(hyper_parameters["train_parameters"]),
)