-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathfeast.bib
122 lines (110 loc) · 3.69 KB
/
feast.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
% MIM (Mutual Information Maximisation)
@inproceedings{MIM,
author = {David D. Lewis},
title = {Feature Selection and Feature Extraction for Text Categorization},
booktitle = {In Proceedings of Speech and Natural Language Workshop},
year = {1992},
pages = {212--217},
publisher = {Morgan Kaufmann}
}
% MIFS (Mutual Information Feature Selection )
@article{MIFS,
author={Battiti, R.},
journal={Neural Networks, IEEE Transactions on},
title={Using mutual information for selecting features in supervised neural net learning},
year={1994},
month={jul},
volume={5},
number={4},
pages={537 -550},
ISSN={1045-9227}
}
% mRMR (minimum Redundancy Maximum Relevance)
@article{mRMR,
title={Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy},
author={Peng, H. and Long, F. and Ding, C.},
journal={IEEE Transactions on pattern analysis and machine intelligence},
pages={1226--1238},
year={2005},
publisher={Published by the IEEE Computer Society}
}
% CMIM (Conditional Mutual Information Maximisation)
@article{CMIM,
author = {Fleuret, Fran\c{c}ois},
title = {Fast Binary Feature Selection with Conditional Mutual Information},
journal = {Journal of Machine Learning Research},
volume = {5},
month = {December},
year = {2004},
issn = {1532-4435},
pages = {1531--1555},
publisher = {JMLR.org}
}
% JMI (Joint Mutual Information)
@inproceedings{JMI,
title={Feature selection based on joint mutual information},
author={Yang, H. and Moody, J.},
booktitle={Proceedings of International ICSC Symposium on Advances in Intelligent Data Analysis},
pages={22--25},
year={1999}
}
% DISR (Double Input Symmetrical Relevance)
@incollection{DISR,
author = {Meyer, Patrick and Bontempi, Gianluca},
title = {On the Use of Variable Complementarity for Feature Selection in Cancer Classification},
booktitle = {Applications of Evolutionary Computing},
publisher = {Springer Berlin / Heidelberg},
pages = {91-102},
volume = {3907},
url = {http://dx.doi.org/10.1007/11732242_9},
year = {2006}
}
% ICAP (Interaction Capping)
@article{ICAP,
title={Machine learning based on attribute interactions},
author={Jakulin, A.},
journal={Fakulteta za racunalni{\v{s}}tvo in informatiko, Univerza v Ljubljani},
year={2005}
}
% CIFE (Conditional Informative Feature Extraction)
@incollection{CIFE
author = {Lin, Dahua and Tang, Xiaoou},
title = {Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion},
booktitle = {Computer Vision – ECCV 2006},
series = {Lecture Notes in Computer Science},
publisher = {Springer Berlin / Heidelberg},
pages = {68-82},
volume = {3951},
url = {http://dx.doi.org/10.1007/11744023_6},
year = {2006}
}
% Beta Gamma Space
@inproceedings{BetaGamma,
title={A new perspective for information theoretic feature selection},
author={Brown, G.},
booktitle={12th International Conference on Artificial Intelligence and Statistics},
volume={5},
pages={49--56},
year={2009}
}
% FCBF (Fast Correlation-Based Filter)
@article{FCBF,
author = {Yu, Lei and Liu, Huan},
title = {Efficient Feature Selection via Analysis of Relevance and Redundancy},
journal = {Journal of Machine Learning Research},
volume = {5},
year = {2004},
issn = {1532-4435},
pages = {1205--1224},
publisher = {JMLR.org}
}
% RELIEF
@inproceedings{RELIEF,
author = {Kira, Kenji and Rendell, Larry A.},
title = {The feature selection problem: traditional methods and a new algorithm},
booktitle = {Proceedings of the tenth national conference on Artificial intelligence},
series = {AAAI'92},
year = {1992},
pages = {129--134},
publisher = {AAAI Press}
}