generated from Developer-Students-Club-ABESEC/readme-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
91 lines (66 loc) · 2.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from nltk.corpus import stopwords
import nltk,os
from nltk.cluster.util import cosine_distance
import numpy as np
import networkx as nx
from flask import Flask
app = Flask(__name__)
def read_article(data):
article = data.split(". ")
sentences = []
for sentence in article:
print(sentence)
sentences.append(sentence.replace("[^a-zA-Z]", " ").split(" "))
sentences.pop()
return sentences
def sentence_similarity(sent1, sent2, stopwords=None):
if stopwords is None:
stopwords = []
sent1 = [w.lower() for w in sent1]
sent2 = [w.lower() for w in sent2]
all_words = list(set(sent1 + sent2))
vector1 = [0] * len(all_words)
vector2 = [0] * len(all_words)
for w in sent1:
if w in stopwords:
continue
vector1[all_words.index(w)] += 1
for w in sent2:
if w in stopwords:
continue
vector2[all_words.index(w)] += 1
return 1 - cosine_distance(vector1, vector2)
def build_similarity_matrix(sentences, stop_words):
similarity_matrix = np.zeros((len(sentences), len(sentences)))
for idx1 in range(len(sentences)):
for idx2 in range(len(sentences)):
if idx1 == idx2: #ignore if both are same sentences
continue
similarity_matrix[idx1][idx2] = sentence_similarity(sentences[idx1], sentences[idx2], stop_words)
return similarity_matrix
def generate_summary(data, top_n=5):
newpath = os.getcwd()
print(newpath)
nltk.data.path.append(newpath)
stop_words = stopwords.words('english')
summarize_text = []
sentences = read_article(data)
sentence_similarity_martix = build_similarity_matrix(sentences, stop_words)
sentence_similarity_graph = nx.from_numpy_array(sentence_similarity_martix)
scores = nx.pagerank(sentence_similarity_graph)
ranked_sentence = sorted(((scores[i],s) for i,s in enumerate(sentences)), reverse=True)
print("Indexes of top ranked_sentence order are ", ranked_sentence)
print("rajat",top_n)
for i in range(top_n):
summarize_text.append(" ".join(ranked_sentence[i][1]))
return summarize_text
@app.route('/')
def hello():
return "Hello Visitor! Use the API to generate summary."
@app.route('/generate/<data>')
def summary(data):
result = generate_summary(data, 2)
ans = ". ".join(result)
return ans
if __name__ == '__main__':
app.run()