-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
192 lines (159 loc) · 7.02 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
from orm_model import CTC_CNN, default_model_params
from orm_dataset import CTC_PriMuS
import os
import time
import cv2
from PIL import Image
import matplotlib as plt
def decode(target):
decoded = []
decoded_2 = []
prev = 0
for note in target:
if note == prev:
continue
else:
decoded.append(note)
prev = note
for note in decoded:
if note != 0:
decoded_2.append(note)
return decoded_2
data_dir = './package_aa'
dict_path = './vocabulary_semantic.txt'
train_loss=val_loss=[]
img_height = 128
learning_rate = 0.04
num_epochs = 500
batch_size = 16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
corpus_list = os.listdir(data_dir)[0:700]
primus = CTC_PriMuS(data_dir, corpus_list, dict_path, True, val_split=0.1)
params = default_model_params(img_height, primus.vocabulary_size)
#print(primus.nextBatch(["targets"])[0][0][50:100])
# model
model = CTC_CNN(img_height, primus.vocabulary_size).to(device)
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
# loss
loss_func = torch.nn.CTCLoss()
loss_log = []
#batch = primus.nextBatch(params)
#inputs = torch.tensor(batch['inputs']).to(device)
#targets = torch.tensor(batch['targets']).to(device)
#inputs=torch.transpose(inputs,1,2)
#inputs=torch.transpose(inputs,1,3)
# loop
start_time = time.time()
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
epoch_time = time.time()
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
val_i = 0
model.eval()
running_loss = 0.0
running_corrects = 0
# Iterate over data.
while True:
if phase == 'train':
batch = primus.nextBatch(params)
#print(primus.current_idx)
#img = Image.fromarray(batch['inputs'][0][:][:][:]*255,'RGB')
#img.show()
inputs = torch.tensor(batch['inputs']).to(device)
targets = torch.tensor(batch['targets']).to(device)
#input_image=cv2.imread("C:\\Users\\psiml\\Downloads\\MusicDetector\\package_aa\\000051650-1_1_1\\000051650-1_1_1.png")
#inputs=torch.tensor([input_image]).to(device)
#output_line="clef-G2 keySignature-EbM timeSignature-3/4 note-Bb5_quarter note-Eb5_eighth note-Bb5_eighth note-C6_eighth note-Bb5_eighth barline note-Ab5_eighth note-Ab5_eighth rest-sixteenth note-Ab5_sixteenth note-G5_sixteenth note-Ab5_sixteenth note-Bb5_sixteenth note-Ab5_sixteenth note-G5_sixteenth note-Ab5_sixteenth barline "
#targets = torch.tensor([output_line]).to(device)
else:
batch = primus.getValidation(params)
inputs = torch.tensor(batch['inputs'][val_i:val_i+params['batch_size']]).to(device)
targets = torch.tensor(batch['targets'][val_i:val_i+params['batch_size']]).to(device)
#inputs = inputs.view(inputs.shape[0], inputs.shape[3], inputs.shape[1], inputs.shape[2])
inputs=torch.transpose(inputs,1,2)
#print(inputs.shape)
inputs=torch.transpose(inputs,1,3)
#print(inputs.shape)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
outputs_transposed = outputs.permute(1,0,2)
output_lengths = [len(x) for x in outputs]
target_lenghts = [len(x) for x in targets]
#print(output_lengths)
#print(target_lenghts)
#print(torch.argmax(outputs[5], dim=1))
#print(targets[5])
decoded_out = [torch.argmax(out, dim=1) for out in outputs]
decoded_target = [target for target in targets]
correct = 0
total = 0
for out, target in zip(decoded_out, decoded_target):
total += len(target)
for o, t in zip(out, target):
if o == t:
correct += 1
print(decoded_out[0])
print(decoded_target[0])
#print(outputs.size)
running_corrects = correct / total
loss = loss_func(outputs_transposed, targets, output_lengths, target_lenghts)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
#print(model.conv1.weight.grad)
optimizer.step()
# statistics TODO: pitaj
running_loss += loss.item() * inputs.size(0)
#running_corrects += torch.sum(preds == labels.data).item()
if phase == 'train':
if primus.current_idx == 0:
break
else:
val_i += params['batch_size']
if val_i >= len(primus.validation_list):
break
if phase == 'train':
epoch_loss = running_loss/ len(primus.training_list)
#loss_log.append([epoch_loss])
train_loss.append(epoch_loss)
else:
epoch_loss = running_loss / len(primus.validation_list)
#loss_log[-1].append(epoch_loss)
val_loss.append(epoch_loss)
#epoch_acc = float(running_corrects) / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f}')#' Acc: {epoch_acc:.4f}')
if phase == 'train':
print(f'{phase} Acc: {running_corrects/16:.4f}')
else:
print(f'{phase} Acc: {running_corrects/16:.4f}')
#metrics[phase+"_loss"].append(epoch_loss)
#metrics[phase+"_acc"].append(epoch_acc)
'''
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())'''
print()
#scheduler.step()
torch.save(model, './model1')
print(time.time() - epoch_time)
time_elapsed = time.time() - start_time
print(f'Training complete in {(time_elapsed // 60):.0f}m {time_elapsed % 60:.0f}s')
plt.plot(train_loss,np.linspace(0,len(train_loss),len(train_loss)),color='r')
plt.show()
plt.plot(val_loss,np.linspace(0,len(val_loss),len(val_loss)),color='g')
plt.show()
#print(loss_log)
#print('Bestval Acc: {best_acc:4f}')