-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspde-lecture.tex
616 lines (512 loc) · 17.8 KB
/
spde-lecture.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
\documentclass[first=dgreen,second=purple,presentation]{elecslides}
%\documentclass{elecslides} % DEFAULT
%\documentclass[first=purple,second=lgreen,logo=redque,normaltitle,nofoot]{aaltoslides} % SOME OPTION EXAMPLES
\usepackage[latin9]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{amssymb,amsmath}
\usepackage{url}
\usepackage{animate}
\usepackage{media9}
\usepackage{tabularx}
\usepackage{colortbl}
\usepackage{lcg}
\reinitrand[first=1, last=3, seed=-1]
\newcommand{\alogoname}[1]{Aalto_ELEC_EN_13_RGB_#1.png}
\rand
%\renewcommand{\smalllogo}{\includegraphics[height=\smalllogoheight]{\alogoname{\arabic{rand}}}}
\renewcommand{\smalllogo}{\includegraphics[height=\smalllogoheight]{\alogoname{1}}}
\graphicspath{{.}{../pics/}}
\mode<presentation>
{
\setbeamercovered{transparent}
}
\mode<handout>
{
%\beamertemplatesolidbackgroundcolor{black!5}
}
\title{ Stochastic (Partial) Differential Equation Methods for Gaussian Processes}
\aaltofootertext{S(P)DEs methods for GPs}{Simo S\"arkk\"a}{\insertframenumber\,/\,\inserttotalframenumber\ }
\author{{\bf Simo S\"arkk\"a}}
\institute{Aalto University, Finland}
\date{}
%\date{Version 1.0, \today}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Contents}
\tableofcontents[currentsection]
\end{frame}
}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\aaltotitleframe
\begin{frame}
\frametitle{Contents}
\tableofcontents[pausesections]
% You might wish to add the option [pausesections]
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Motivating applications}
\begin{frame}
\frametitle{Magneto- and Electroencephalography (MEG \& EEG)}
\begin{itemize}[<+->]
\item \alert{Unknown}: Time course of amplitudes of dipole sources.
\item \alert{Observed}: Electromagnetic field (potential / flux).
\end{itemize}
\begin{center}
\includegraphics[width=0.6\textwidth]{head-col}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Electrical Impedance and Capacitance Tomography (EIT \& ECT)}
\begin{itemize}[<+->]
\item \alert{Unknown}: Conductivity/permittivity constants.
\item \alert{Observed}: Impedances on boundary.
\end{itemize}
\begin{center}
\includegraphics[width=0.6\textwidth]{rocsole}
{\tiny Source: Rocsole Ltd. -- www.rocsole.com}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Magnetic field mapping}
\begin{itemize}[<+->]
\item \alert{Unknown}: Magnetic field (or actually the corresponding potential).
\item \alert{Observed}: Point measurements of the magnetic field.
\end{itemize}
\begin{center}
\includegraphics[width=0.4\textwidth]{table-surf}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Machine learning and Kriging}
\begin{itemize}[<+->]
\item \alert{Unknown}: Class labels or missing spatial values.
\item \alert{Observed}: Subset (training set) of class labels, spatial values, and predictors.
\end{itemize}
\begin{center}
\includegraphics[width=0.57\textwidth]{demo_classific2}
\includegraphics[width=0.3\textwidth]{spatial1_pic1}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Target Tracking and Location Sensing}
\begin{itemize}[<+->]
\item \alert{Unknown}: Target trajectories and velocities.
\item \alert{Observed}: Direction or inertial measurements.
\end{itemize}
\begin{center}
\includegraphics[width=0.6\textwidth]{tracking2-col}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Using SPDE solvers on Gaussian processes}
\begin{frame}{Gaussian process regression models}
\begin{itemize}[<+->]
\item A typical \alert{GP regression problem}:
\begin{equation}
\begin{split}
f(\mathbf{x}) &\sim \mathrm{GP}(m(\mathbf{x}),k(\mathbf{x},\mathbf{x}')) \\
\mathbf{y} &= \boldsymbol{\mathcal{H}} \, f(\mathbf{x}) + \boldsymbol{\varepsilon} %, \qquad \varepsilon \sim \mathrm{N}(\mathbf{0},\Sigma),
\end{split}
\nonumber
\end{equation}
\item In plain \alert{Gaussian process regression} we have
\begin{equation}
\begin{split}
\boldsymbol{\mathcal{H}} \, f(\mathbf{x}) = \begin{pmatrix}
f(\mathbf{x}_1) \\ \vdots \\ f(\mathbf{x}_n))
\end{pmatrix}
\end{split}
\nonumber
\end{equation}
\item In inverse problems the \alert{operator matrix} $\boldsymbol{\mathcal{H}}$ encodes \alert{physics} into the model.
\item The \alert{mean} $m(\mathbf{x})$ and \alert{covariance function} $k(\mathbf{x},\mathbf{x}')$ encode the prior information on $f(\mathbf{x})$.
\end{itemize}
\end{frame}
\begin{frame}{Gaussian process regression models (cont.)}
\begin{itemize}[<+->]
\item \alert{Temporal} models (models with single input):
\begin{equation}
\begin{split}
f(t) &\sim \mathrm{GP}(m(t),k(t,t')) \\
\mathbf{y} &= \boldsymbol{\mathcal{H}} \, f(t) + \boldsymbol{\varepsilon} %, \qquad \varepsilon \sim \mathrm{N}(\mathbf{0},\Sigma),
\end{split}
\nonumber
\end{equation}
\item \alert{Spatio-temporal} models:
\begin{equation}
\begin{split}
f(\mathbf{x},t) &\sim \mathrm{GP}(m(\mathbf{x},t),k(\mathbf{x},t;\mathbf{x}',t')) \\
\mathbf{y} &= \boldsymbol{\mathcal{H}} \, f(\mathbf{x},t) + \boldsymbol{\varepsilon} %, \qquad \varepsilon \sim \mathrm{N}(\mathbf{0},\Sigma),
\end{split}
\nonumber
\end{equation}
\item All of these can be recasted as \alert{statistical estimation on a stochastic partial differential equation (SPDE) model}.
\end{itemize}
\end{frame}
\begin{frame}{Why use S(P)DE solvers for GPs?}
\begin{itemize}[<+->]
\item The $O(n^3)$ \alert{computational complexity} is always a challenge.
%\item E.g. \alert{Inducing point methods}, \alert{grid-FFT}, \alert{compact support} -- but we need more.
\item \alert{Latent force models} combine PDE/ODEs with GPs.
\item What do we get:
\begin{itemize}[<+->]
\item \alert{Sparse approximations} developed for SPDEs.
\item \alert{Reduced rank} Fourier/basis function approximations.
\item The use of \alert{Markov properties} and Markov approximations.
\item \alert{State-space} methods for SDEs/SPDEs.
\item Path to \alert{non-Gaussian processes}.
\end{itemize}
\item Downsides:
\begin{itemize}[<+->]
\item Approximations of non-parametric models with parametric models.
\item Approximations of a non-Markovian models as Markovian.
\item Mathematics can become messy.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Kernel vs. SPDE representations of GPs}
\begin{tabularx}{0.98\textwidth}{ | p{0.38\textwidth} | p{0.52\textwidth} | }
\hline
\cellcolor{blue!25}GP model $\mathbf{x} \in \mathbb{R}^d, t \in \mathbb{R}$ & \cellcolor{blue!25}Equivalent Static SPDE model \\
\hline
\hline
Homogenous $k(\mathbf{x},\mathbf{x}')$ &
SPDE model
\begin{equation}
\mathcal{L} \, f(\mathbf{x}) = w(\mathbf{x})
\nonumber
\end{equation}
%translation invariant operator $\mathcal{L}$
\\
\hline
Stationary $k(t,t')$ &
State-space/It\^o-SDE model
\begin{equation}
%\frac{d\mathbf{f}(t)}{dt} = \mathbf{A} \, \mathbf{f}(t) + \mathbf{L} \, w(t)
d\mathbf{f}(t) = \mathbf{A} \, \mathbf{f}(t) \, dt + \mathbf{L} \, dW(t)
\nonumber
\end{equation}
\\
\hline
Homogenous/stationary $k(\mathbf{x},t;\mathbf{x}',t')$ &
Stochastic evolution equation
\begin{equation}
\partial_t \mathbf{f}(\mathbf{x},t)
= \mathcal{A}_x \, \mathbf{f}(\mathbf{x},t) \, dt + \mathbf{L} \, dW(\mathbf{x},t)
%, \quad
%f = \mathbf{C} \, \mathbf{f}
\nonumber
\end{equation}
\\
\hline
\end{tabularx}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{What do the SPDE methods then look like?}
\begin{frame}{Basic idea of SPDE inference on GPs [1/2]}
\begin{itemize}[<+->]
\item Consider e.g. the \alert{stochastic partial differential equation}:
\begin{equation}
\frac{\partial^2 f(x,y)}{\partial x^2}
+ \frac{\partial^2 f(x,y)}{\partial y^2} -\lambda^2 \, f(x,y)
= w(x,y)
%\label{eq:whittle}
\nonumber
\end{equation}
\item Fourier transforming gives the \alert{spectral density}:
%
\begin{equation}
S(\omega_x,\omega_y) \propto
\left( \lambda^2 + \omega_x^2 + \omega_y^2 \right)^{-2}.
\nonumber
\end{equation}
%
\item Inverse Fourier transform gives the \alert{covariance function}:
{\small
\begin{equation}
k(x,y;x',y')
= \frac{\sqrt{(x-x')^2 + (y-y')^2}}{2\lambda} \,
K_1(\lambda \, \sqrt{(x-x')^2 + (y-y')^2})
\nonumber
\end{equation}
}
\item But this is just the \alert{Mat\'ern covariance function}.
% \item The corresponding \alert{RKHS} is a \alert{Sobolev space}.
%\item Any probabilistic (weak) \alert{question on GP} with covariance $k$ is equivalent to the \alert{question on the SPDE model}.
\end{itemize}
\end{frame}
\begin{frame}{Basic idea of SPDE inference on GPs [2/2]}
\begin{itemize}[<+->]
\item More generally, \alert{SPDE} for some linear operator $\mathcal{L}$:
\begin{equation}
\mathcal{L} \, f(\mathbf{x}) = w(\mathbf{x})
\nonumber
\end{equation}
\item Now $f$ is a GP with \alert{precision and covariance operators}:
\begin{equation}
\begin{split}
\mathcal{K}^{-1} &= \mathcal{L}^* \, \mathcal{L} \\
\mathcal{K} &= (\mathcal{L}^* \, \mathcal{L})^{-1}
\end{split}
\nonumber
\end{equation}
\item \alert{Idea:} approximate $\mathcal{L}$ or $\mathcal{L}^{-1}$ using PDE/ODE methods:
\begin{enumerate}[<+->]
\item \alert{Finite-differences/FEM} methods lead to \alert{sparse precision approximations}.
\item \alert{Fourier/basis-function} methods lead to \alert{reduced rank covariance approximations}.
\item \alert{Spectral factorization} leads to state-space (Kalman) methods which are \alert{time-recursive} (or sparse in precision).
\end{enumerate}
%\item In particular, when $\mathbf{x} \in \mathbb{R}$, we can use \alert{Kalman filtering} which scales as $O(n)$.
\end{itemize}
\end{frame}
\begin{frame}{Finite-differences/FEM -- sparse precision}
\begin{block}{}
\begin{columns}
\begin{column}{0.55\textwidth}
\begin{itemize}[<+->]
\item Basic idea:
{\small
\begin{equation}
\begin{split}
\frac{\partial f(x)}{\partial x} & \approx \frac{f(x + h) - f(x)}{h} \\
\frac{\partial^2 f(x)}{\partial x^2} & \approx \frac{f(x + h) - 2 f(x) + f(x - h)}{h^2} \\
\end{split}
\nonumber
\end{equation}
}
\end{itemize}
\end{column}
\begin{column}{0.45\textwidth}
\includegraphics[width=0.45\columnwidth]{fd}
\includegraphics[width=0.45\columnwidth]{fem}
\end{column}
\end{columns}
\end{block}
\begin{itemize}[<+->]
\setcounter{enumi}{2}
\item We get an SPDE approximation $\mathcal{L} \approx \mathbf{L}$, where $\mathbf{L}$ is \alert{sparse} %e.g. [Lindgren et al. 2011, Roininen \ldots S\"arkk\"a 2016].
\item The \alert{precision operator} approximation is then \alert{sparse}:
\begin{equation}
\begin{split}
\mathcal{K}^{-1} \approx \mathbf{L}^\mathsf{T} \, \mathbf{L} = \text{sparse}\\
\end{split}
\nonumber
\end{equation}
\item $\mathcal{L}$ need to be approximated as \alert{integro-differential operator}.
\item Requires formation of a \alert{grid}, but parallelizes well.
\end{itemize}
\end{frame}
%[XX,YY] = meshgrid(0:0.01:1,0:0.01:1);
%clf;
%for i=1:3
% for j=1:3
% subplot(3,3,j+3*(i-1));
% pcolor(XX,YY,sin(2*pi*i*XX) .* sin(2*pi*j*YY));
% axis off;
% shading flat
% end
%end
%print -dpng fourier.png;
%
\begin{frame}{Classical and random Fourier methods -- reduced rank approximations and FFT}
\begin{block}{}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}[<+->]
\item Approximation:
{\small
\begin{equation}
\begin{split}
f(\mathbf{x}) &\approx \sum_{\mathbf{k} \in \mathbb{N}^d}
c_\mathbf{k} \, \exp\left(2 \pi \, \mathrm{i} \, \mathbf{k}^\mathsf{T} \, \mathbf{x} \right) \\
c_\mathbf{k} &\sim \text{Gaussian}
\end{split}
\nonumber
\end{equation}
}
\end{itemize}
\end{column}
\begin{column}{0.4\textwidth}
\includegraphics[width=1.0\columnwidth]{fourier}
\end{column}
\end{columns}
\end{block}
\begin{itemize}[<+->]
\setcounter{enumi}{2}
\item We use \alert{less coefficients} $c_\mathbf{k}$ than the \alert{number of data points}.
\item Leads to \alert{reduced-rank covariance approximations}
\begin{equation}
\begin{split}
k(\mathbf{x},\mathbf{x}') \approx \sum_{|\mathbf{k}| \le N}
\sigma^2_{\mathbf{k}} \, \exp\left(2 \pi \, \mathrm{i} \, \mathbf{k}^\mathsf{T} \, \mathbf{x} \right)
\, \exp\left(2 \pi \, \mathrm{i} \, \mathbf{k}^\mathsf{T} \, \mathbf{x}' \right)^*
\end{split}
\nonumber
\end{equation}
\item Truncated series, random frequencies, FFT, \ldots
\end{itemize}
\end{frame}
\begin{frame}{Hilbert-space/Galerkin methods -- reduced rank approximations}
\begin{block}{}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}[<+->]
\item Approximation:
{\small
\begin{equation}
\begin{split}
f(\mathbf{x}) &\approx \sum_{i}
c_i \, \phi_i(\mathbf{x}) \\
% c_i &\sim \text{Gaussian} \\
\langle \phi_i, \phi_j \rangle_H &\approx \delta_{ij}, \text{ e.g. } \nabla^2 \phi_i = -\lambda_i \, \phi_i
\end{split}
\nonumber
\end{equation}
}
\end{itemize}
\end{column}
\begin{column}{0.4\textwidth}
\includegraphics[width=1.0\columnwidth]{spherical}
\end{column}
\end{columns}
\end{block}
\begin{itemize}[<+->]
\setcounter{enumi}{2}
\item Again, use \alert{less coefficients} than the \alert{number of data points}.
\item \alert{Reduced-rank covariance approximations} such as
\begin{equation}
\begin{split}
k(\mathbf{x},\mathbf{x}') \approx \sum_{i=1}^N
\sigma^2_i \, \phi_i(\mathbf{x}) \, \phi_i(\mathbf{x}').
\end{split}
\nonumber
\end{equation}
\item Wavelets, Galerkin, finite elements, \ldots
\end{itemize}
\end{frame}
\begin{frame}{State-space methods -- Kalman filters and sparse precision}
\begin{block}{}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}[<+->]
\item Approximation:
{\small
\begin{equation}
S(\omega) \approx \frac{b_0 + b_1 \, \omega^2 + \cdots + b_M \, \omega^{2M}}
{a_0 + a_1 \, \omega^2 + \cdots + a_N \, \omega^{2N}}
\nonumber
\end{equation}
}
\end{itemize}
\end{column}
\begin{column}{0.4\textwidth}
%\includegraphics[width=0.7\columnwidth]{Sqexp-vs-Matern-1D}
\includegraphics[width=0.6\columnwidth]{TikZ-temporal-figure}
\end{column}
\end{columns}
\end{block}
\begin{itemize}[<+->]
\setcounter{enumi}{2}
\item Results in a \alert{linear stochastic differential equation (SDE)}
\begin{equation}
%\frac{d\mathbf{f}(t)}{dt} = \mathbf{A} \, \mathbf{f}(t) + \mathbf{L} \, w(t)
d\mathbf{f}(t) = \mathbf{A} \, \mathbf{f}(t) \, dt + \mathbf{L} \, d\mathbf{W}
\nonumber
\end{equation}
\item More generally \alert{stochastic evolution equations}.
\item $O(n)$ GP regression with \alert{Kalman filters and smoothers}.
\item Parallel \alert{block-sparse precision} methods $\longrightarrow$ $O(\log n)$.
\end{itemize}
\end{frame}
\begin{frame}{State-space methods -- Kalman filters and sparse precision (cont.)}
\begin{example}[Mat\'ern class 1d]
The Mat\'ern class of covariance functions is
%
\begin{equation*}
k(t,t') = \sigma^2 \,\frac{2^{1-\nu}}{\Gamma(\nu)}
\left(\frac{\sqrt{2\nu}}{\ell} |t-t'| \right)^{\nu} K_{\nu}
\left(\frac{\sqrt{2\nu}}{\ell} |t-t'| \right).
\end{equation*}
%
When, e.g., $\nu = 3/2$, we have
\begin{equation*}
\begin{split}
d\mathbf{f}(t) &=
\begin{pmatrix}
0 & 1 \\
-\lambda^2 & -2\lambda
\end{pmatrix} \,\mathbf{f}(t) \, dt
+
\begin{pmatrix}
0\\
q^{1/2}
\end{pmatrix}\,dW(t), \\
f(t) &= \begin{pmatrix} 1 & 0 \end{pmatrix} \, \mathbf{f}(t).
\end{split}
\end{equation*}
\end{example}
\end{frame}
\begin{frame}{State-space methods -- Kalman filters and sparse precision (cont.)}
\begin{example}[2D Mat\'ern covariance function]
%
\begin{itemize}[<+->]
\item Consider a space-time Mat\'ern covariance function
%
$$ k(x,t;x',t') = \sigma^2\frac{2^{1-\nu}}{\Gamma(\nu)}\left(\sqrt{2\nu}\,\frac{\rho}{
l}\right)^\nu K_\nu\left(\sqrt{2\nu}\,\frac{\rho}{l}\right). $$
where we have $\rho = \sqrt{(t-t')^2+ (x-x')^2}$, $\nu=1$ and $d=2$.
\item We get the following representation:
%
\begin{equation}
d\mathbf{f}(x,t) =
\begin{pmatrix}
0 & 1 \\
% \nabla^2-\lambda^2
% & -2 \sqrt{\lambda^2-\nabla^2}
\frac{\partial^2}{\partial x^2} - \lambda^2
& -2 \sqrt{\lambda^2 - \frac{\partial^2}{\partial x^2}}
\end{pmatrix} \, \mathbf{f}(x,t) \, dt+ \begin{pmatrix} 0 \\ 1 \end{pmatrix} dW(x,t).
\nonumber
\end{equation}
%
%\item Example realization:
%
% \begin{center}
% \includegraphics[width=6cm,keepaspectratio]{Matern-2D}
% \end{center}%
%
\end{itemize}
\end{example}
\end{frame}
\section{Discussion and summary}
\begin{frame}{What then?}
\begin{itemize}[<+->]
\item We can \alert{exchange and map approximations} between the fields:
\begin{itemize}[<+->]
\item Inducing points $\leftrightarrow$ point-collocation; spectral methods $\leftrightarrow$ Galerkin methods; finite-differences $\leftrightarrow$ GMRFs;
\item EP is {\em just a linearization method} -- there are better linearization methods in other fields.
\end{itemize}
\item \alert{Non-Gaussian} processes: Student's-t processes, non-linear It\^o processes, jump processes, hybrid point/Gaussian processes.
\item \alert{Hierarchical} (deep) \alert{SPDE models}: we \alert{stack SPDEs} on top of each other -- the SPDE just becomes non-linear.
\item \alert{Combined first-principles} and nonparametric models -- latent force models (LFM), also non-linear and non-Gaussian LFMs.
\item \alert{Inverse problems} -- operators in the measurement model.
%\item \alert{State-space stochastic control} in Gaussian processes and LFMs.
%\item \alert{SPDE methods for SVMs}
%\item \alert{Kernel embedding of S(P)DEs}
\end{itemize}
\end{frame}
\begin{frame}{Summary}
\begin{itemize}[<+->]
\item Gaussian processes (GPs) are nice, \alert{but the computational scaling is bad.}
\item Applications in e.g. \alert{brain imaging, tomography, positioning, and Kriging}.
\item GPs have representations as \alert{solutions to SPDEs}.
\item SPDE methods can be used to \alert{speed up GP inference}.
\item In temporal models we can use \alert{Kalman/Bayesian filters and smoothers}.
\item Opens up new paths towards \alert{non-linear GP models}.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}