-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
266 lines (221 loc) · 23.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
File: main.py
Purpose:
Project main file. In this file are set the Link-level-Simulator-Variables (LLS) for configuring the desired
simulation scenario, conditions, and outputs.
Authors: Ernesto Fontes Pupo / Claudia Carballo González
University of Cagliari
Date: 2024-10-30
Version: 1.0.0
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
LLSim5G is a link-level simulator for HetNet 5G use cases.
Copyright (C) 2024 Ernesto Fontes, Claudia Carballo
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
# Standard library imports
import logging
# Third-party imports
import pandas as pd
import numpy as np
import random
from tabulate import tabulate
# Local application/library-specific imports
import scenario.scenario_definition as sx
import link_computation.link_computation as lc
import output.outputs_config as out
import general.general as ge
# pd.set_option('display.max_rows', None) # This specific setting ensures that all rows in a DataFrame will be displayed when it's printed.
# pd.set_option('display.max_columns', None) # This specific setting ensures that all columns in a DataFrame will be displayed when it's printed.
# pd.set_option('display.width', 1000) # Increase width for better readability
pd.set_option('display.colheader_justify', 'center') # Center-align column headers
pd.set_option('display.precision', 2) # Set decimal precision if needed
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
if __name__ == "__main__":
########## Uncomment to fix the random outputs during simulations ##########
# np.random.seed(42) # Use any integer seed value
# random.seed(42) # Use any integer seed value
######################################################################
simulation_settings = "from_main_script" # String: ("from_main_script", "from_excel"). To set the simulation settings directly from the script or from external excels placed in the simulation_settings folder
save_simulation_settings = True # Boolean. To save the simulation configuration as excels files into the folder simulation_settings
if simulation_settings == "from_main_script":
general_simulation_parameters = pd.DataFrame(
[[
"[100, 100]", # "grid_xy". Definition of the simulation grid's x and y in meters (m). It must be defined as a string to ensure saving and uploading in and from the configuration Excel.
39.2137738, # "grid_center_latitude". Latitude in degrees of the grid center, default value: grid_center_lat = 39.2137738 degrees, used for non-terrestrial network (NTN) simulations.
9.1153844, # "grid_center_longitude". Longitude in degrees of the grid center in degrees, default value: grid_center_lat = 9.1153844 degrees, used for NTN simulations.
5, # "simulation_time". Simulation time in seconds (s).
1, # "simulation_resolution". Simulation resolution, e.g., 1 means a one-second resolution (one sample per second), 0.1 means a 0.1-second resolution (100 ms), or ten samples for every second.
True, # "downlink". To enable the downlink computation from the base stations (BSs) to the end-devices (EDs).
False, # "uplink". To enable the uplink computation from the EDs to the BSs. TODO is not enabled between the EDs and the NTNs.
False, # "d2d_link". To enable the device-to-device (D2D) link computation among EDs.
True, # "ntn_link". To enable the link computation between the available NTNs (e.g., LEO, MEO, HAPS) and the EDs.
True, # "save_scenario_xlsx". To save (./output/scenario/) as .xlsx the simulated scenario. It means the coordinate x, y, and z of each EDs or BSs or the latitude, longitude, and altitude (LLA) of the NTNs.
True, # "save_metrics_xlsx". To save (./output/metrics/) the resulting LLS outputs: SINR, CQI, BLER, among each ED and each BS (TN/NTN) or EDs for D2D communications, as .xlsx.
True, # "show_video". Boolean to enable or disable the simulation video display regarding the grid and the configured BSs and EDs with their mobility behaviour. (The link computation is executed after we closed the video).
False, # "save_video". Boolean to enable saving the video file.
"gif", # "video_format". ("mp4", "gif", "Both"). For now, the video format (in the general_simulation_parameters input data frame) can be saved as a .gif file.
0.1, # "video_velocity". Float variable for modifying the video velocity. Default value: 0.1.
True, # "print_scenario_outputs". A Boolean to enable printing the scenario output. It means the coordinates x, y, and z of each EDs or BSs or the LLA of the NTNs.
True # "print_metrics_outputs". Boolean to enable printing the resulting simulation metrics: SINR, CQI, BLER, among each ED and each BS (TN/NTN) or EDs for D2D communications.
]])
general_simulation_parameters.columns = ["grid_xy", "grid_center_latitude", "grid_center_longitude", "simulation_time", "simulation_resolution", "downlink",
"uplink", "d2d_link", "ntn_link", "save_scenario_xlsx",
"save_metrics_xlsx", "show_video", "save_video", "video_format",
"video_velocity", "print_scenario_outputs", "print_metrics_outputs"]
general_channel_modeling = pd.DataFrame(
[[
True, # "dynamic_loss": Boolean, where True means a dynamic Line of Sight (LOS). Regarding each BS, a user could be in LOS or non-LOS (NLOS). False means only LOS.
False, # "dynamic_hb": Boolean, where True means a dynamic human blockage (HB) in the link between the BS and the ED (mainly used for mmWave simulations). False means no HB considerations.
False, # "o2i": Boolean where True means a dynamic outdoor-to-indoor (o2i), a user could be simulated in o2i or not conditions regarding the BS (It means NLOS). False means only LOS.
"dynamic", # "inside_what_o2i": ("dynamic", "building", "car"). "dynamic" means that it will be chosen randomly if the user is inside a building or a car; it will modify the penetration losses considered. The other options are to fix or inside a building or a car.
"low-loss", # "penetration_loss_model": ("low-loss", "high-loss"). According to 3GPP TR 38.811: 6.6.3 O2I penetration loss for NTN simulations only. Low-loss means a traditional building type, while high-loss means a thermally efficient one.
True, # "shadowing": Boolean for enabling the shadowing fading (slow-fading) attenuation in the link.
True, # "fast_fading": Boolean for enabling the fast-fading attenuation in the link according to jakes, tdl or cdl (TODO CDL is not enabled for NTN links).
"jakes", # "fast_fading_model": ("jakes", "tdl", "cdl") TDL and CDL are implemented according 3GPP TR 38.901 (TODO CDL is not enabled for NTN links).
False, # "atmospheric_absorption". Boolean for enabling the atmospheric absorption attenuation in the link.
"Very short" # "desired_delay_spread": ("Nominal", "Very long", "Long delay", "Short", "Very short", None). 3GPP TR 38.901, Table 7.7.3-1. Example scaling parameters for CDL and TDL models.
]])
general_channel_modeling.columns = ["dynamic_loss", "dynamic_hb", "o2i", "inside_what_o2i", "penetration_loss_model",
"shadowing", "fast_fading", "fast_fading_model", "atmospheric_absorption", "desired_delay_spread"]
general_parameters = pd.DataFrame(
[[
-174, # "thermal_noise". The value -174 dBm/Hz is commonly used to represent the thermal noise power spectral density at room temperature (approximately 290K).
10, # "h_ceiling". Considered height of the buildings (in m). This is only used for InF link modes and must be equal to or lower than 10 meters.
0.2, # "block_density". Human block density, valid when "dynamic_hb" is True. block_density = 1, which means that if "dynamic_hb" is True, it will always be considered HB penetration attenuation. block_density = 0, means zero probability of HB.
"real", # "channel_type": ("real", "awgn"). Used for the link to system adaptation process and computing the users CQI feedback or using the real BLER (Block Error Rate) or AWGN curves. When FF and Shadowing are considered, the channel type must always be real.
0.1 # "target_bler": typical values (0.1, 0.01). It is the target BLER for selecting the user's CQI.
]])
general_parameters.columns = ["thermal_noise", "h_ceiling", "block_density", "channel_type", "target_bler"]
# bs_parameters = pd.DataFrame([[50, 50, 25, "tbs", "UMa", "three_sectors", 2.4, 2, 50, 20, 10, 2, 7, 15, None],
# [25, 25, 10, "tbs", "UMi", "three_sectors", 28, 2, 50, 10, 10, 2, 7, 15, None],
# [75, 75, 10, "tbs", "UMi", "three_sectors", 28, 2, 50, 10, 10, 2, 7, 15, None],
# [75, 25, 100, "abs", "A2G", "three_sectors", 28, 2, 50, 10, 10, 2, 7, 15, None],
# [25, 75, 100, "abs", "A2G", "three_sectors", 28, 2, 50, 10, 10, 2, 7, 15, None],
# [None, None, 8000, "sat", "HAPS", "Sat_ax", 28, 2, 50, 10, 10, 2, 7, None, 50]])
bs_parameters = pd.DataFrame([
[50, 50, 25, "tbs", "UMa", "three_sectors", "dual", "E", "B", 28, 2, 50, 20, 10, 2, 7, 15, None],
# [75, 75, 10, "tbs", "UMi", "three_sectors", "dual", "D", "A", 28, 2, 1, 10, 10, 2, 7, 15, None],
# [25, 25, 10, "tbs", "UMi", "three_sectors", "dual", "D", "A", 28, 2, 1, 10, 10, 2, 7, 15, None],
[39.2337738, 9.12153844, 50000, "sat", "HAPS", "Sat_ax", "dual", "C_ntn", "A_ntn", 2, 2, 50, 36, 30, 2, 7, None, 85],
# [39.2137738, 9.1153844, 50000, "sat", "HAPS", "Sat_ax", "dual", "C_ntn", "A_ntn", 2, 2, 50, 36, 30, 2, 7, None, 90],
])
# fast_fading_los_type: TN_los: "D", "E"; NTN: "C_ntn", "D_ntn"
# fast_fading_nlos_type: TN_nlos: "A", "B", "C"; NTN: "A_ntn", "B_ntn"
# NTN: "A100_ntn", "C5_ntn"
bs_parameters.columns = ["x", # For "tbs"/"abs": Int value. x coordinate (in m) of the BS. For "sat": latitude of the satellite. It defines the satellite's elevation angle regarding the grid's center (in degrees).
"y", # For "tbs"/"abs": Int value. y coordinate (in m) of the BS. For "sat": the satellite's longitude. It defines the satellite's elevation angle regarding the grid's center (in degrees).
"z", # For "tbs"/"abs"/"sat": Int value. z coordinate (in m) of the BS (height of BS). It defines the satellite's elevation angle regarding the grid's center (in degrees).
"type", # ("tbs", "abs", "sat"). For defining if the BS is a terrestrial (TN) BS, or an Aerial BS (a BS on top of a UAV), or a satellite NTN.
"scenario", # for tbs:("UMi", "UMa", "RMa", "InH-Mixed", "InH-Open", "InF-HH", "InF-SL", "InF-DL", "InF-SH", "InF-DH", "D2D"), for abs ("A2G"), for sat ("HAPS", "LEO", "MEO"). TODO for the NTN (type = sat) this is not considered.
"antenna_mode", # for tbs and abs: ("omni", "three_sectors", "four_sectors", "one_sectors_90_degrees"), for sat: ("omni", "Sat_ax").
"ax_panel_polarization", # ("single", "dual"). For considering an antenna with single or dual polarization elements.
"fast_fading_los_type", # ("D", "E"; NTN: "C_ntn", "D_ntn"), according to 3GPP TR 38.901/38.811.
"fast_fading_nlos_type", # ("A", "B", "C"; NTN: "A_ntn", "B_ntn"), according to 3GPP TR 38.901/38.81.
"fc", # float from 0.5 to 100 Gigahertz (frequency of the BS).
"numerology", # (0, 1, 2, 3, 4) numerology of the BS according to 5G NR, 3GPP TS 38.214.
"n_rb", # Int with the number of physical resource blocks (RBs).
"p_tx", # Transmission (tx) power of the BS in dBm.
"ax_gain", # Antenna (ax) gain of the BS in dBi.
"cable_loss", # Cable loss, default value 2 dB.
"noise_figure", # Noise Figure, default value 7 dB.
"v_tilt", # Vertical tilt of the BS antenna, default value 15 degrees.
"desired_elevation_angle" # The desired elevation angle (in degrees, from 1 to 90) of the satellite regarding the center of the grid (in degrees) is just used for comparison with the real elevation angle configured to the Sat from their LLA coordinates and the grid coordinates. In the case of type ="tbs" or "abs" it must be set as None.
]
sub_groups_parameters = pd.DataFrame(
[["pedestrian", 4, "omni", 0, 0, 0, 7, True, True, "[1, 1]", "[50, 50]", "[0.4, 1.2]", 1, "Random Waypoint", None, None, "[1.5, 1.5]", "urban"],
# ["pedestrian", 10, "three_sectors", 0, 0, 0, 7, True, False, "[0.5, 0.5]", "[150, 150]", "[1, 5]", 1, "Random Direction model", None, None, "[1.5, 1.5]", "urban"],
# ["car_mounted", 1, "three_sectors", 10, 10, 0, 7, True, False, "[1, 0.2]", "[50, 75]", "[10, 15]", 1, "Random Waypoint", None, None, "[1.5, 1.5]", "urban"],
# ["iot", 1, "three_sectors", 10, 10, 0, 7, True, False, "[0.25, 0.25]", "[75, 75]", "[0.0001, 0.0002]", 1, "Random Waypoint", None, None, "[1.5, 1.5]", "urban"]
])
sub_groups_parameters.columns = ["type", # ("pedestrian", "car_mounted", "iot"). These classifications are only used to identify among three possible kinds of simulated EDs.
"k_sub", # Int, the number of EDs to simulate.
"antenna_mode", # ("omni", "three_sectors")
"p_tx", # Transmission (tx) power of the ED in dB.
"ax_gain", # Antenna (ax) gain of the BS in dBi. The ax_gain is considered a 0 if the antenna_mode = "omni".
"cable_loss", # Cable loss, default value 2 dB.
"noise_figure", # Noise Figure, default value 7 dB.
"d2d", # Boolean for enabling the D2D capability of this EDs
"fixed_height", # Boolean for enabling an scenario definition where all the ED have the same and fixed height. fixed_height = true min_max_height[mg][0] == min_max_height[mg][1].
"grid_size_ratio", # Array of two Double parameters (between 0 and 1) (grid_size_ratio[0], grid_size_ratio[1]). grid_size_ratio[0], grid_size_ratio[0] = 1 means that the users will be randomly distributed in 100% of the grid regarding the x and y coordinates. grid_size_ratio[0], grid_size_ratio[0] = 0.1 means that the users will be randomly distributed in 10% of the grid regarding the x and y coordinates. The x grid_size_ratio[0] and y grid_size_ratio[1] percents that can be configured independently.
"reference_location", # Array of two int values (reference_location[0], reference_location[1]), for defining the center reference location where the users will be simulated. x = reference_location[0], y = reference_location[1].
"min_max_velocity", # Array of two float values (min_max_velocity[0], min_max_velocity[1]), for defining the minimun and maximun velocity (m/s) that the users could experience.
"wait_time", # Float value for defining the wait time (s) that the users with a certain mobility could experience. It means that the users in their trajectory could be static for the defined "wait_time".
"mobility_model", # ("Random Static", "Random Walk", "Random Waypoint", "Truncated Levy Walk model", "Random Direction model", "Gauss-Markov model", "Reference Point Group model"), s.t., https://github.com/panisson/pymobility.
"aggregation", # Double, parameter (between 0 and 1). The parameter 'aggregation' controls how close the nodes are to the group center. It is only valid for "Reference Point Group model".
"number_mg_rpg_model", # The parameter 'number_mg_rpg_model' is an Int value that define the number of sub-groups, k_sub/number_mg_rpg_model must be integer. It is only valid for "Reference Point Group model".
"min_max_height", # Array of two float values (min_max_height[0], min_max_height[1]), for defining the min and max height of the EDs. When fixed_height is equal true min_max_height[0] = min_max_height[1].
"rx_scenario" # ("dense urban", "urban", "suburban", "rural"). This is only used for type = sat.
]
if save_simulation_settings:
general_simulation_parameters.to_excel("simulation_settings/general_simulation_parameters.xlsx")
general_channel_modeling.to_excel("simulation_settings/general_channel_modeling.xlsx")
general_parameters.to_excel("simulation_settings/general_parameters.xlsx")
bs_parameters.to_excel("simulation_settings/bs_parameters.xlsx")
sub_groups_parameters.to_excel(f"simulation_settings/sub_groups_parameters.xlsx")
general_simulation_parameters["grid_xy"] = general_simulation_parameters["grid_xy"].apply(ge.convert_grid_xy)
sub_groups_parameters["grid_size_ratio"] = sub_groups_parameters["grid_size_ratio"].apply(ge.convert_grid_xy)
sub_groups_parameters["reference_location"] = sub_groups_parameters["reference_location"].apply(ge.convert_grid_xy)
sub_groups_parameters["min_max_velocity"] = sub_groups_parameters["min_max_velocity"].apply(ge.convert_grid_xy)
sub_groups_parameters["min_max_height"] = sub_groups_parameters["min_max_height"].apply(ge.convert_grid_xy)
elif simulation_settings == "from_excel":
general_simulation_parameters = pd.read_excel("simulation_settings/general_simulation_parameters.xlsx")
general_channel_modeling = pd.read_excel("simulation_settings/general_channel_modeling.xlsx")
general_parameters = pd.read_excel("simulation_settings/general_parameters.xlsx")
bs_parameters = pd.read_excel("simulation_settings/bs_parameters.xlsx")
sub_groups_parameters = pd.read_excel("simulation_settings/sub_groups_parameters.xlsx")
general_simulation_parameters["grid_xy"] = general_simulation_parameters["grid_xy"].apply(ge.convert_grid_xy)
sub_groups_parameters["grid_size_ratio"] = sub_groups_parameters["grid_size_ratio"].apply(ge.convert_grid_xy)
sub_groups_parameters["reference_location"] = sub_groups_parameters["reference_location"].apply(ge.convert_grid_xy)
sub_groups_parameters["min_max_velocity"] = sub_groups_parameters["min_max_velocity"].apply(ge.convert_grid_xy)
sub_groups_parameters["min_max_height"] = sub_groups_parameters["min_max_height"].apply(ge.convert_grid_xy)
print("general_simulation_parameters")
print(tabulate(general_simulation_parameters, headers='keys', tablefmt='fancy_grid'))
print("general_channel_modeling")
print(tabulate(general_channel_modeling, headers='keys', tablefmt='fancy_grid'))
print("general_parameters")
print(tabulate(general_parameters, headers='keys', tablefmt='fancy_grid'))
print("bs_parameters")
print(tabulate(bs_parameters, headers='keys', tablefmt='fancy_grid'))
print("sub_groups_parameters")
print(tabulate(sub_groups_parameters, headers='keys', tablefmt='fancy_grid'))
# logger.info("Starting the simulation with %d EDs", sub_groups_parameters["k_sub"])
df_x, df_y, df_z, df_tbs_xyz, df_abs_xyz, df_sat_lla, time_map, grid_lla, grid_xy = sx.scenario_definition(general_simulation_parameters,
bs_parameters, general_channel_modeling,
sub_groups_parameters,
general_parameters)
metrics_dic_bs_dl = 0
metrics_dic_bs_ul = 0
metrics_dic_d2d = 0
out.scenario_outputs(general_simulation_parameters, bs_parameters, general_channel_modeling, sub_groups_parameters, general_parameters, df_x, df_y,
df_z, df_tbs_xyz, df_abs_xyz, df_sat_lla, time_map, metrics_dic_bs_dl, metrics_dic_bs_ul, metrics_dic_d2d)
if general_simulation_parameters["downlink"][0]:
metrics_dic_bs_dl = lc.link_computation_bs2d_dl(bs_parameters, general_channel_modeling, sub_groups_parameters, general_parameters, df_x, df_y,
df_z, time_map, grid_lla, grid_xy)
out.bs2d_dl_outputs(general_simulation_parameters, bs_parameters, general_channel_modeling,
sub_groups_parameters, general_parameters, df_x, df_y,
df_z, df_tbs_xyz, df_abs_xyz, df_sat_lla, time_map, metrics_dic_bs_dl, metrics_dic_bs_ul,
metrics_dic_d2d)
if general_simulation_parameters["uplink"][0]:
metrics_dic_bs_ul = lc.link_computation_bs2d_ul(bs_parameters, general_channel_modeling, sub_groups_parameters,
general_parameters, df_x, df_y,
df_z, time_map, grid_lla, grid_xy)
out.bs2d_ul_outputs(general_simulation_parameters, bs_parameters, general_channel_modeling,
sub_groups_parameters, general_parameters, df_x, df_y,
df_z, df_tbs_xyz, df_abs_xyz, time_map, metrics_dic_bs_dl, metrics_dic_bs_ul,
metrics_dic_d2d)
if general_simulation_parameters["d2d_link"][0]:
metrics_dic_d2d = lc.link_computation_d2d(bs_parameters, general_channel_modeling, sub_groups_parameters, general_parameters, df_x, df_y,
df_z, time_map, grid_lla, grid_xy)
out.d2d_outputs(general_simulation_parameters, bs_parameters, general_channel_modeling, sub_groups_parameters, general_parameters, df_x, df_y,
df_z, df_tbs_xyz, df_abs_xyz, time_map, metrics_dic_bs_dl, metrics_dic_bs_ul, metrics_dic_d2d)