-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathaxibram.v
360 lines (319 loc) · 14.9 KB
/
axibram.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*******************************************************************************
* Module: axibram
* Date:2014-03-18
* Author: Andrey Filippov
* Description:
*
* Copyright (c) 2014 Elphel, Inc.
* axibram.v is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* axibram.v is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/> .
*******************************************************************************/
module axibram(
input aclk, // clock - should be buffered
input aresetn, // reset, active low
// AXI Read Address
input [31:0] araddr, // ARADDR[31:0], input
input arvalid, // ARVALID, input
output arready, // ARREADY, output
input [11:0] arid, // ARID[11:0], input
// input [ 1:0] arlock, // ARLOCK[1:0], input
// input [ 3:0] archache,// ARCACHE[3:0], input
// input [ 2:0] arprot, // ARPROT[2:0], input
input [ 3:0] arlen, // ARLEN[3:0], input
input [ 1:0] arsize, // ARSIZE[1:0], input
input [ 1:0] arburst, // ARBURST[1:0], input
// input [ 3:0] adqos, // ARQOS[3:0], input
// AXI Read Data
output [31:0] rdata, // RDATA[31:0], output
output reg rvalid, // RVALID, output
input rready, // RREADY, input
output reg [11:0] rid, // RID[11:0], output
output reg rlast, // RLAST, output
output [ 1:0] rresp, // RRESP[1:0], output
// AXI Write Address
input [31:0] awaddr, // AWADDR[31:0], input
input awvalid, // AWVALID, input
output awready, // AWREADY, output
input [11:0] awid, // AWID[11:0], input
// input [ 1:0] awlock, // AWLOCK[1:0], input
// input [ 3:0] awcache, // AWCACHE[3:0], input
// input [ 2:0] awprot, // AWPROT[2:0], input
input [ 3:0] awlen, // AWLEN[3:0], input
input [ 1:0] awsize, // AWSIZE[1:0], input
input [ 1:0] awburst, // AWBURST[1:0], input
// input [ 3:0] awqos, // AWQOS[3:0], input
// AXI PS Master GP0: Write Data
input [31:0] wdata, // WDATA[31:0], input
input wvalid, // WVALID, input
output wready, // WREADY, output
input [11:0] wid, // WID[11:0], input
input wlast, // WLAST, input
input [ 3:0] wstb, // WSTRB[3:0], input
// AXI PS Master GP0: Write Responce
output bvalid, // BVALID, output
input bready, // BREADY, input
output [11:0] bid, // BID[11:0], output
output [ 1:0] bresp // BRESP[1:0], output
);
// **** Read channel ****
wire ar_nempty;
wire ar_half_full;
assign arready=~ar_half_full;
wire [ 1:0] arburst_out;
// SuppressWarnings VEditor all
wire [ 1:0] arsize_out; // not used
wire [ 3:0] arlen_out;
wire [ 9:0] araddr_out;
wire [11:0] arid_out;
wire rst=~aresetn;
reg read_in_progress=0;
reg read_in_progress_d=0; // delayed by one active cycle (not skipped)
reg read_in_progress_or=0; // read_in_progress || read_in_progress_d
reg [ 9:0] read_address; // transfer address (not including lower bits
reg [ 3:0] read_left; // number of read transfers
// will ignore arsize - assuming always 32 bits (a*size[2:0]==2)
reg [ 1:0] rburst; // registered burst type
reg [ 3:0] rlen; // registered burst type
wire [ 9:0] next_rd_address_w; // next transfer address;
assign next_rd_address_w=
rburst[1]?
(rburst[0]? (10'h0):((read_address[9:0]+1) & {6'h3f, ~rlen[3:0]})):
(rburst[0]? (read_address[9:0]+1):(read_address[9:0]));
wire start_read_burst_w;
// wire bram_re_w;
wire bram_reg_re_w;
wire read_in_progress_w;
wire read_in_progress_d_w;
wire last_in_burst_w;
wire last_in_burst_d_w;
reg pre_last_in_burst_r;
assign rresp=2'b0;
// reduce combinatorial delay from rready (use it in final mux)
// assign bram_reg_re_w= read_in_progress && (!rvalid || rready);
// assign start_read_burst_w=ar_nempty && (!read_in_progress || (bram_reg_re_w && (read_left==4'b0))); // reduce delay from arready
assign last_in_burst_w= bram_reg_re_w && (read_left==4'b0);
assign last_in_burst_d_w=bram_reg_re_w && pre_last_in_burst_r;
// make sure ar_nempty is updated
// assign start_read_burst_w=ar_nempty && (!read_in_progress || last_in_burst_w); // reduce delay from arready
assign read_in_progress_w= start_read_burst_w || (read_in_progress && !last_in_burst_w); // reduce delay from arready
assign read_in_progress_d_w=(read_in_progress && bram_reg_re_w) ||
(read_in_progress && !last_in_burst_d_w); // reduce delay from arready
// assign read_in_progress_d_w=read_in_progress_d;
wire pre_rvalid_w;
assign pre_rvalid_w=bram_reg_re_w || (rvalid && !rready);
reg bram_reg_re_0;
wire pre_left_zero_w;
reg last_in_burst_1;
reg last_in_burst_0;
reg start_read_burst_0;
reg start_read_burst_1;
reg [11:0] pre_rid0;
reg [11:0] pre_rid;
always @ (posedge aclk or posedge rst) begin
if (rst) pre_last_in_burst_r <= 0;
// else if (start_read_burst_w) pre_last_in_burst_r <= (read_left==4'b0);
else if (bram_reg_re_w) pre_last_in_burst_r <= (read_left==4'b0);
if (rst) rburst[1:0] <= 0;
else if (start_read_burst_w) rburst[1:0] <= arburst_out[1:0];
if (rst) rlen[3:0] <= 0;
else if (start_read_burst_w) rlen[3:0] <= arlen_out[3:0];
if (rst) read_in_progress <= 0;
else read_in_progress <= read_in_progress_w;
if (rst) read_in_progress_d <= 0;
// else read_in_progress_d <= read_in_progress_d_w;
else if (bram_reg_re_w) read_in_progress_d <= read_in_progress_d_w;
if (rst) read_in_progress_or <= 0;
// else read_in_progress_or <= read_in_progress_d_w || read_in_progress_w;
// else if (bram_reg_re_w) read_in_progress_or <= read_in_progress_d_w || read_in_progress_w;
// FIXME:
else if (bram_reg_re_w || !read_in_progress_or) read_in_progress_or <= read_in_progress_d_w || read_in_progress_w;
// reg read_in_progress_d=0; // delayed by one active cycle (not skipped)
// reg read_in_progress_or=0; // read_in_progress || read_in_progress_d
if (rst) read_left <= 0;
else if (start_read_burst_w) read_left <= arlen_out[3:0]; // precedence over inc
else if (bram_reg_re_w) read_left <= read_left-1;
if (rst) read_address <= 10'b0;
else if (start_read_burst_w) read_address <= araddr_out[9:0]; // precedence over inc
else if (bram_reg_re_w) read_address <= next_rd_address_w;
if (rst) rvalid <= 1'b0;
else if (bram_reg_re_w && read_in_progress_d) rvalid <= 1'b1;
else if (rready) rvalid <= 1'b0;
if (rst) rlast <= 1'b0;
else if (last_in_burst_d_w) rlast <= 1'b1;
else if (rready) rlast <= 1'b0;
end
always @ (posedge aclk) begin
// bram_reg_re_0 <= read_in_progress_w && !pre_rvalid_w;
bram_reg_re_0 <= (ar_nempty && !read_in_progress) || (read_in_progress && !read_in_progress);
last_in_burst_1 <= read_in_progress_w && pre_left_zero_w;
last_in_burst_0 <= read_in_progress_w && !pre_rvalid_w && pre_left_zero_w;
start_read_burst_1 <= !read_in_progress_w || pre_left_zero_w;
start_read_burst_0 <= !read_in_progress_w || (!pre_rvalid_w && pre_left_zero_w);
if (start_read_burst_w) pre_rid0[11:0] <= arid_out[11:0];
if (bram_reg_re_w) pre_rid[11:0] <= pre_rid0[11:0];
if (bram_reg_re_w) rid[11:0] <= pre_rid[11:0];
end
// reducing rready combinatorial delay
assign pre_left_zero_w=start_read_burst_w?(arlen_out[3:0]==4'b0):(bram_reg_re_w && (read_left==4'b0001));
// assign bram_reg_re_w= read_in_progress && (!rvalid || rready);
assign bram_reg_re_w= read_in_progress_or && (!rvalid || rready); // slower/simplier
// assign bram_reg_re_w= rready? read_in_progress : bram_reg_re_0; // faster - more verification
assign last_in_burst_w=bram_reg_re_w && (read_left==4'b0); // slower/simplier
// assign last_in_burst_w=rready? (read_in_progress && (read_left==4'b0)): (bram_reg_re_0 && (read_left==4'b0));
// assign last_in_burst_w=rready? last_in_burst_1: last_in_burst_0; // faster (unfinished) - more verification
assign start_read_burst_w=ar_nempty && (!read_in_progress || (bram_reg_re_w && (read_left==4'b0))); // reduce delay from rready
// assign start_read_burst_w=ar_nempty && (!read_in_progress || ((rready? read_in_progress : bram_reg_re_0) && (read_left==4'b0)));
// assign start_read_burst_w=
// rready?
// (ar_nempty && (!read_in_progress || ((read_in_progress) && (read_left==4'b0)))):
// (ar_nempty && (!read_in_progress || ((bram_reg_re_0 ) && (read_left==4'b0))));
/*
assign start_read_burst_w=
ar_nempty*(rready?
(!read_in_progress || (read_left==4'b0)):
((!read_in_progress || ((bram_reg_re_0 ) && (read_left==4'b0)))));
*/
// assign start_read_burst_w= ar_nempty && (rready?start_read_burst_1:start_read_burst_0);
// **** Write channel: ****
wire aw_nempty;
wire aw_half_full;
assign awready=~aw_half_full;
wire [ 1:0] awburst_out;
// SuppressWarnings VEditor all
wire [ 1:0] awsize_out; // not used
wire [ 3:0] awlen_out;
wire [ 9:0] awaddr_out;
// SuppressWarnings VEditor all
wire [11:0] awid_out; // not used
wire w_nempty;
wire w_half_full;
assign wready=~w_half_full;
wire [31:0] wdata_out;
// SuppressWarnings VEditor all
wire wlast_out; // not used
wire [ 3:0] wstb_out; // WSTRB[3:0], input
wire [11:0] wid_out;
reg write_in_progress=0;
reg [ 9:0] write_address; // transfer address (not including lower bits
reg [ 3:0] write_left; // number of read transfers
// will ignore arsize - assuming always 32 bits (a*size[2:0]==2)
reg [ 1:0] wburst; // registered burst type
reg [ 3:0] wlen; // registered awlen type (for wrapped over transfers)
wire [ 9:0] next_wr_address_w; // next transfer address;
wire bram_we_w; // write BRAM memory
wire start_write_burst_w;
wire write_in_progress_w;
assign next_wr_address_w=
wburst[1]?
(wburst[0]? (10'h0):((write_address[9:0]+1) & {6'h3f, ~wlen[3:0]})):
(wburst[0]? (write_address[9:0]+1):(write_address[9:0]));
assign bram_we_w= w_nempty && write_in_progress;
assign start_write_burst_w=aw_nempty && (!write_in_progress || (w_nempty && (write_left[3:0]==4'b0)));
assign write_in_progress_w=aw_nempty || (write_in_progress && !(w_nempty && (write_left[3:0]==4'b0)));
always @ (posedge aclk or posedge rst) begin
if (rst) wburst[1:0] <= 0;
else if (start_write_burst_w) wburst[1:0] <= awburst_out[1:0];
if (rst) wlen[3:0] <= 0;
else if (start_write_burst_w) wlen[3:0] <= awlen_out[3:0];
if (rst) write_in_progress <= 0;
else write_in_progress <= write_in_progress_w;
if (rst) write_left <= 0;
else if (start_write_burst_w) write_left <= awlen_out[3:0]; // precedence over inc
else if (bram_we_w) write_left <= write_left-1;
if (rst) write_address <= 10'b0;
else if (start_write_burst_w) write_address <= awaddr_out[9:0]; // precedence over inc
else if (bram_we_w) write_address <= next_wr_address_w;
end
// **** Write responce channel ****
wire [ 1:0] bresp_in;
assign bresp_in=2'b0;
/*
output bvalid, // BVALID, output
input bready, // BREADY, input
output [11:0] bid, // BID[11:0], output
output [ 1:0] bresp // BRESP[1:0], output
*/
/*
reg bram_reg_re_r;
always @ (posedge aclk) begin
bram_reg_re_r <= bram_reg_re_w;
end
*/
ram_1kx32_1kx32
#(
.REGISTERS(1) // 1 - registered output
)
ram_1kx32_1kx32_i
(
.rclk(aclk), // clock for read port
.raddr(read_in_progress?read_address[9:0]:10'h3ff), // read address
// .ren(read_in_progress_or) , // read port enable
.ren(bram_reg_re_w) , // read port enable
.regen(bram_reg_re_w), // output register enable
// .regen(bram_reg_re_r), // output register enable
.data_out(rdata[31:0]), // data out
.wclk(aclk), // clock for read port
.waddr(write_address[9:0]), // write address
.we(bram_we_w), // write port enable
.web(wstb_out[3:0]), // write byte enable
.data_in(wdata_out[31:0]) // data out
);
fifo_same_clock #( .DATA_WIDTH(30),.DATA_DEPTH(4))
raddr_i (
.rst(rst),
.clk(aclk),
.we(arvalid && arready),
.re(start_read_burst_w),
.data_in({arid[11:0], arburst[1:0],arsize[1:0],arlen[3:0],araddr[11:2]}),
.data_out({arid_out[11:0], arburst_out[1:0],arsize_out[1:0],arlen_out[3:0],araddr_out[9:0]}),
.nempty(ar_nempty),
.full(),
.half_full(ar_half_full)
);
fifo_same_clock #( .DATA_WIDTH(30),.DATA_DEPTH(4))
waddr_i (
.rst(rst),
.clk(aclk),
.we(awvalid && awready),
.re(start_write_burst_w),
.data_in({awid[11:0], awburst[1:0],awsize[1:0],awlen[3:0],awaddr[11:2]}),
.data_out({awid_out[11:0], awburst_out[1:0],awsize_out[1:0],awlen_out[3:0],awaddr_out[9:0]}),
.nempty(aw_nempty),
.full(),
.half_full(aw_half_full)
);
fifo_same_clock #( .DATA_WIDTH(49),.DATA_DEPTH(4))
wdata_i (
.rst(rst),
.clk(aclk),
.we(wvalid && wready),
.re(bram_we_w), //start_write_burst_w), // wrong
.data_in({wid[11:0],wlast,wstb[3:0],wdata[31:0]}),
.data_out({wid_out[11:0],wlast_out,wstb_out[3:0],wdata_out[31:0]}),
.nempty(w_nempty),
.full(),
.half_full(w_half_full)
);
fifo_same_clock #( .DATA_WIDTH(14),.DATA_DEPTH(4))
wresp_i (
.rst(rst),
.clk(aclk),
.we(bram_we_w),
.re(bready && bvalid),
.data_in({wid_out[11:0],bresp_in[1:0]}),
.data_out({bid[11:0],bresp[1:0]}),
.nempty(bvalid),
.full(),
.half_full()
);
endmodule