Skip to content

Latest commit

 

History

History
137 lines (106 loc) · 4.07 KB

HTTP.md

File metadata and controls

137 lines (106 loc) · 4.07 KB

HTTP server

Mistral.rs provides a lightweight OpenAI API compatible HTTP server based on axum. The request and response formats are supersets of the OpenAI API.

The API consists of the following endpoints. They can be viewed in your browser interactively by going to http://localhost:<port>/docs.

Additional object keys

To support additional features, we have extended the completion and chat completion request objects. Both have the same keys added:

  • top_k: int | null. If non null, it is only relevant if positive.
  • grammar: {"type" : "regex" | "lark" | "json_schema" | "llguidance", "value": string} or null. Grammar to use.
  • adapters: array of string | null. Adapter names to activate for this request.
  • min_p: float | null. If non null, it is only relevant if 1 >= min_p >= 0.

POST: /v1/chat/completions

Process an OpenAI compatible request, returning an OpenAI compatible response when finished. Please find the official OpenAI API documentation here. To control the interval keep-alive messages are sent, set the KEEP_ALIVE_INTERVAL environment variable to the desired time in ms.

To send a request with the Python openai library:

import openai

client = openai.OpenAI(
    base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
    api_key = "EMPTY"
)

completion = client.chat.completions.create(
model="",
messages=[
    {"role": "system", "content": "You are Mistral.rs, an AI assistant."},
    {"role": "user", "content": "Write a story about Rust error handling."}
]
)

print(completion.choices[0].message)

Or with curl:

curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer EMPTY" \
-d '{
"model": "",
"messages": [
{
    "role": "system",
    "content": "You are Mistral.rs, an AI assistant."
},
{
    "role": "user",
    "content": "Write a story about Rust error handling."
}
]
}'

A streaming request can also be created by setting "stream": true in the request JSON. Please see this guide.

GET: /v1/models

Returns the running models.

Example with curl:

curl http://localhost:<port>/v1/models

GET: / or /health

Returns the server health.

Example with curl:

curl http://localhost:<port>/health

GET: /docs

Returns OpenAPI API docs via SwaggerUI.

Example with curl:

curl http://localhost:<port>/docs

POST: /v1/completions

Process an OpenAI compatible completions request, returning an OpenAI compatible response when finished. Please find the official OpenAI API documentation here.

To send a request with the Python openai library:

import openai

client = openai.OpenAI(
    base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
    api_key = "EMPTY"
)

completion = client.completions.create(
    model="mistral",
    prompt="What is Rust?",
    max_tokens=256,
    frequency_penalty=1.0,
    top_p=0.1,
    temperature=0,
)

print(completion.choices[0].message)

Or with curl:

curl http://localhost:8080/v1/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer EMPTY" \
-d '{
"model": "",
"prompt": "What is Rust?"
}'

POST: /activate_adapters

Make the specified adapters the active adapters. Pass the names as a JSON object with the key adapter_names to an array of strings (the adapter names).

Example with curl:

curl http://localhost:<port>/activate_adapters -H "Content-Type: application/json" -H "Authorization: Bearer EMPTY" -d '{"adapter_names":["adapter_2"]}'

POST: /re_isq

Reapply ISQ to the model if possible. Pass the names as a JSON object with the key ggml_type to a string (the quantization level).

Example with curl:

curl http://localhost:<port>/re_isq -H "Content-Type: application/json" -H "Authorization: Bearer EMPTY" -d '{"ggml_type":"Q4K"}'