-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention.py
98 lines (75 loc) · 3.5 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import datetime
import keras.layers
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input
from tensorflow.keras.preprocessing.image import load_img
date_str = str(datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) # Datetime string used in output file names.
vgg16_model = VGG16(weights='imagenet', # Use pre-trained weights from ImageNet's 14 million images and 1000 object classes.
include_top=True) # Include the classification top as we want to classify images.
vgg16_model.summary()
# Freeze weights
for layer in vgg16_model.layers:
layer.trainable = False
quit() # TODO Crashes on inputs/outputs!
# between input and conv 1-1
base_model = tf.keras.Model(inputs=vgg16_model.inputs,
outputs=vgg16_model.get_layer("block1_conv1").outputs)
base_out = base_model.output
senet = senet_layers(base_out)
sen_model = Model(inputs=base_model.input, outputs=senet)
sen_model.summary()
new_top_layer = base_model
merged = keras.layers.Concatenate([])
# between pooling and conv 2-1
base_model = tf.keras.Model(input=vgg16_model.input,
output=vgg16_model.get_layer("block2_conv1").output)
# between pooling and conv 3-1
base_model = tf.keras.Model(input=vgg16_model.input,
output=vgg16_model.get_layer("block3_conv1").output)
# between pooling and conv 4-1
base_model = tf.keras.Model(input=vgg16_model.input,
output=vgg16_model.get_layer("block4_conv1").output)
# between pooling and 5-1
base_model = tf.keras.Model(input=vgg16_model.input,
output=vgg16_model.get_layer("block5_conv1").output)
# between pooling and dense
base_model = tf.keras.Model(input=vgg16_model.input,
output=vgg16_model.get_layer("block2_conv1").output)
# ImageNet classes 134, 322, 736, and 986.
image_titles = ['Crane', 'Ringlet Butterfly', 'Pool Table', 'Yellow Lady-slipper']
# image_titles = ['Bittern', 'Admiral', 'Poncho', 'Daisy']
# Load images and convert to a Numpy array
img1 = load_img('images/134_Crane/0.jpg', target_size=(224, 224))
img2 = load_img('images/134_Crane/1.jpg', target_size=(224, 224))
img3 = load_img('images/134_Crane/2.jpg', target_size=(224, 224))
img4 = load_img('images/134_Crane/3.jpg', target_size=(224, 224))
images = np.asarray([np.array(img1), np.array(img2), np.array(img3), np.array(img4)])
# Prepare input data for VGG16.
X = preprocess_input(images)
# Render original input images.
f, ax = plt.subplots(nrows=1, ncols=4, figsize=(12, 4))
for i, title in enumerate(image_titles):
ax[i].set_title(title, fontsize=16)
ax[i].imshow(images[i])
ax[i].axis('off')
plt.tight_layout()
plt.savefig('images/VGG16-'+date_str+'.png')
plt.show()
def senet_layers(module_input):
channel = module_input._keras_shape[-1] # Channel-last order.
x = tf.keras.layers.GlobalAveragePooling2D()(module_input)
x = tf.keras.layers.Reshape((1,1,channel))(x)
x = tf.keras.layers.Dense(channel // 8,
activation='relu',
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')(x)
x = tf.keras.layers.Dense(channel,
activation='sigmoid',
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')(x)
x = multiply([module_input, x])
return x