-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmoothgrad-vgg16.py
58 lines (48 loc) · 2.35 KB
/
smoothgrad-vgg16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import datetime
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input
from tensorflow.keras.preprocessing.image import load_img
from tf_keras_vis.utils.model_modifiers import ReplaceToLinear
from tf_keras_vis.utils.scores import CategoricalScore
from tf_keras_vis.saliency import Saliency
date_str = str(datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) # Datetime string used in output file names.
model = VGG16(weights='imagenet', # Use pre-trained weights from ImageNet's 14 million images and 1000 object classes.
include_top=True) # Include the classification top, as we want to classify images.
# ImageNet classes 280, 320, and 674.
image_titles = ['Gray Fox', 'Damselfly', 'Mousetrap']
# Load images and convert to a Numpy array
img1 = load_img('images/280-grayfox-contrast.jpg', target_size=(224, 224))
img2 = load_img('images/320-damselfly-contrast.jpg', target_size=(224, 224))
img3 = load_img('images/674-mousetrap.jpg', target_size=(224, 224))
images = np.asarray([np.array(img1), np.array(img2), np.array(img3)])
# Prepare input data for VGG16.
X = preprocess_input(images)
# Render original input images.
f, ax = plt.subplots(nrows=1, ncols=3, figsize=(12, 4))
for i, title in enumerate(image_titles):
ax[i].set_title(title, fontsize=16)
ax[i].imshow(images[i])
ax[i].axis('off')
plt.tight_layout()
plt.savefig('images/VGG16-'+date_str+'.png')
plt.show()
# Create Saliency object.
saliency = Saliency(model,
model_modifier=ReplaceToLinear(),
clone=True)
# Generate saliency map with smoothing that reduces noise, by adding noise to input images.
saliency_map = saliency(CategoricalScore([280, 320, 674]), # ImageNet indices for Gray Fox, Damselfly, and Mousetrap.
X,
smooth_samples=20, # The number of calculating gradients iterations.
smooth_noise=0.20) # noise spread level.
# Render saliency maps.
f, ax = plt.subplots(nrows=1, ncols=3, figsize=(12, 4))
for i, title in enumerate(image_titles):
ax[i].set_title(title, fontsize=14)
ax[i].imshow(saliency_map[i], cmap='jet')
ax[i].axis('off')
plt.tight_layout()
plt.savefig('images/SmoothGrad-'+date_str+'.png')
plt.show()