-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path057_square_root_convergents.hs
28 lines (18 loc) · 1.07 KB
/
057_square_root_convergents.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
-- It is possible to show that the square root of two can be expressed as an infinite continued fraction.
-- √ 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...
-- By expanding this for the first four iterations, we get:
-- 1 + 1/2 = 3/2 = 1.5
-- 1 + 1/(2 + 1/2) = 7/5 = 1.4
-- 1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
-- 1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...
-- The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
-- In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?
import Data.Ratio
import Numeric
import MyLib_haskell
numeratorGTdenum :: Rational -> Bool
numeratorGTdenum n = numLength (numerator n) > numLength (denominator n)
iterativeRoot :: Int -> [Rational]
iterativeRoot n = map (+ (-1)) $ take n $ tail $ iterate (\x -> 2 + 1/x) 2
main :: IO()
main = print . length . filter (== True) . map numeratorGTdenum . iterativeRoot $ 1000