This repository has been archived by the owner on Dec 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 557
/
Copy pathcompletion.py
101 lines (86 loc) · 3.75 KB
/
completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""Complete sentences with FlexLLMGen and OPT models."""
import argparse
from flexllmgen.flex_opt import (Policy, OptLM, ExecutionEnv, CompressionConfig,
str2bool)
from transformers import AutoTokenizer
def main(args):
# Prompts
prompts = [
"Question: Where were the 2004 Olympics held?\n"
"Answer: Athens, Greece\n"
"Question: What is the longest river on the earth?\n"
"Answer:",
"Extract the airport codes from this text.\n"
"Text: \"I want a flight from New York to San Francisco.\"\n"
"Airport codes: JFK, SFO.\n"
"Text: \"I want you to book a flight from Phoenix to Las Vegas.\"\n"
"Airport codes:",
]
# Initialize environment
env = ExecutionEnv.create(args.offload_dir)
# Offloading policy
policy = Policy(len(prompts), 1,
args.percent[0], args.percent[1],
args.percent[2], args.percent[3],
args.percent[4], args.percent[5],
overlap=True, sep_layer=True, pin_weight=args.pin_weight,
cpu_cache_compute=args.cpu_cache_compute, attn_sparsity=1.0,
compress_weight=args.compress_weight,
comp_weight_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=0, symmetric=False),
compress_cache=args.compress_cache,
comp_cache_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=2, symmetric=False))
# Model
print("Initialize...")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-30b", padding_side="left")
tokenizer.add_bos_token = False
stop = tokenizer("\n").input_ids[0]
model = OptLM(args.model, env, args.path, policy)
# Generate
print("Generate...")
inputs = tokenizer(prompts, padding="max_length", max_length=128)
output_ids = model.generate(
inputs.input_ids,
do_sample=True,
temperature=0.7,
max_new_tokens=32,
stop=stop)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
print("Outputs:\n" + 70 * '-')
for i in [0, len(outputs)-1]:
print(f"{i}: {outputs[i]}")
print("-" * 70)
# Shutdown
print("Shutdown...")
env.close_copy_threads()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="facebook/opt-6.7b",
help="The model name.")
parser.add_argument("--path", type=str, default="~/opt_weights",
help="The path to the model weights. If there are no cached weights, "
"FlexLLMGen will automatically download them from HuggingFace.")
parser.add_argument("--offload-dir", type=str, default="~/flexllmgen_offload_dir",
help="The directory to offload tensors. ")
parser.add_argument("--percent", nargs="+", type=int,
default=[100, 0, 100, 0, 100, 0],
help="Six numbers. They are "
"the percentage of weight on GPU, "
"the percentage of weight on CPU, "
"the percentage of attention cache on GPU, "
"the percentage of attention cache on CPU, "
"the percentage of activations on GPU, "
"the percentage of activations on CPU")
parser.add_argument("--pin-weight", type=str2bool, nargs="?",
const=True, default=True)
parser.add_argument("--cpu-cache-compute", action="store_true")
parser.add_argument("--compress-weight", action="store_true",
help="Whether to compress weight.")
parser.add_argument("--compress-cache", action="store_true",
help="Whether to compress cache.")
args = parser.parse_args()
assert len(args.percent) == 6
main(args)