This repository has been archived by the owner on Dec 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 557
/
Copy pathdata_wrangle_run.py
543 lines (478 loc) · 20.8 KB
/
data_wrangle_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# The source code in this file is partially adapted from
# https://github.com/HazyResearch/fm_data_tasks/blob/main/fm_data_tasks/utils/prompt_utils.py
# which is under Apache License Version 2.0.
"""Run inference."""
import argparse
from tqdm import tqdm
import json
import math
import logging
from pathlib import Path
import time
import numpy as np
from transformers import AutoTokenizer, AutoConfig
import flexllmgen.apps.data_wrangle.utils.data_utils as data_utils
import flexllmgen.apps.data_wrangle.utils.prompt_utils as prompt_utils
from flexllmgen.apps.data_wrangle.utils import constants
from flexllmgen.apps.data_wrangle.utils.utils import compute_metrics, setup_logger
from flexllmgen.flex_opt import (Policy, OptLM, ExecutionEnv, CompressionConfig, str2bool)
logger = logging.getLogger(__name__)
def add_flexllmgen_args(parser):
parser.add_argument("--pad-to-seq-len", type=int)
parser.add_argument("--model", type=str, default="facebook/opt-1.3b",
help="The model name.")
parser.add_argument("--path", type=str, default="~/opt_weights",
help="The path to the model weights. If there are no cached weights, "
"FlexLLMGen will automatically download them from HuggingFace.")
parser.add_argument("--run-path", type=str, default="runs")
parser.add_argument("--offload-dir", type=str, default="~/flexllmgen_offload_dir",
help="The directory to offload tensors. ")
parser.add_argument("--gpu-batch-size", type=int, default=16)
parser.add_argument("--num-gpu-batches", type=int, default=1)
parser.add_argument("--percent", nargs="+", type=int,
default=[100, 0, 100, 0, 100, 0],
help="Six numbers. They are "
"the percentage of weight on GPU, "
"the percentage of weight on CPU, "
"the percentage of attention cache on GPU, "
"the percentage of attention cache on CPU, "
"the percentage of activations on GPU, "
"the percentage of activations on CPU")
parser.add_argument("--pin-weight", type=str2bool, nargs="?",
const=True, default=True)
parser.add_argument("--cpu-cache-compute", action="store_true")
parser.add_argument("--compress-weight", action="store_true",
help="Whether to compress weight.")
parser.add_argument("--compress-cache", action="store_true",
help="Whether to compress cache.")
def parse_args() -> argparse.Namespace:
"""Generate args."""
parser = argparse.ArgumentParser(description="Simple calculator")
parser.add_argument(
"--data_dir",
type=str,
help="Which data directory to run.",
required=True,
)
parser.add_argument(
"--output_dir", type=str, help="Output directory.", default="outputs"
)
parser.add_argument(
"--cache_name",
type=str,
help="Manifest cache type.",
default="sqlite",
choices=["redis", "sqlite", "noop"],
)
parser.add_argument(
"--cache_connection",
type=str,
help="Manifest cache connection string.",
default="fm_data_tasks.sqlite",
)
parser.add_argument(
"--client_name",
type=str,
help="Manifest client type.",
default="openai",
choices=["openai", "opt", "huggingface"],
)
parser.add_argument(
"--client_connection",
type=str,
help="Manifest client connection string.",
default=None,
)
parser.add_argument(
"--run_tag",
type=str,
help="Tag for run saving.",
default="default",
)
parser.add_argument(
"--overwrite_cache",
action="store_true",
help="Overwrite sqlite cache of input/output results.",
)
parser.add_argument("--k", type=int, help="Number examples in prompt", default=1)
parser.add_argument(
"--sample_method",
type=str,
help="Example generation method",
default="random",
choices=["random", "manual", "validation_clusters"],
)
parser.add_argument("--seed", type=int, default=1234)
parser.add_argument(
"--class_balanced",
help="Class balance training data. Good for classification tasks \
with random prompts.",
action="store_true",
)
parser.add_argument(
"--sep_tok",
type=str,
help="Separate for attr: val pairs in row. Default is '.'.",
default=".",
)
parser.add_argument(
"--nan_tok",
type=str,
help="Token to represent nan entries. Default is 'nan'.",
default="nan",
)
parser.add_argument(
"--num_run",
type=int,
help="Number examples to run through model.",
default=-1,
)
parser.add_argument(
"--num_trials",
type=int,
help="Number trials to run. Results will be averaged with variance reported.",
default=1,
)
parser.add_argument(
"--num_print",
type=int,
help="Number example prompts to print.",
default=10,
)
parser.add_argument(
"--add_task_instruction",
help="Add task instruction to the prompt before examples.",
action="store_true",
)
parser.add_argument("--task_instruction_idx", type=int, default=0)
parser.add_argument("--do_test", help="Run on test file.", action="store_true")
parser.add_argument(
"--dry_run", help="Dry run. Do not actually ping model.", action="store_true"
)
parser.add_argument(
"--stop_token", help="Token to stop on for a given generated response", default="\n"
)
# Model args
parser.add_argument("--temperature", type=float, help="Temperature.", default=0.0)
parser.add_argument(
"--max_tokens", type=int, help="Max tokens to generate.", default=3
)
parser.add_argument(
"--batch_run", help="Use FlexLLMGen batch inference.", action="store_true"
)
add_flexllmgen_args(parser)
args = parser.parse_args()
return args
def get_tokenizer(name):
if name == 'facebook/opt-175b':
tokenizer = AutoTokenizer.from_pretrained('facebook/opt-30b', padding_side="left")
else:
tokenizer = AutoTokenizer.from_pretrained(name, padding_side="left")
tokenizer.add_bos_token = False
if 'galactica' in name:
config = AutoConfig.from_pretrained(name)
tokenizer.pad_token = config.pad_token_id
tokenizer.eos_token = config.eos_token_id
return tokenizer
def single_query_test(args, task_instruction, test_data, task, pd_data_files, test_file):
# Initialize environment
tokenizer = get_tokenizer(args.model)
env = ExecutionEnv.create(args.offload_dir)
# Offloading policy
policy = Policy(1, 1,
args.percent[0], args.percent[1],
args.percent[2], args.percent[3],
args.percent[4], args.percent[5],
overlap=True, sep_layer=True, pin_weight=args.pin_weight,
cpu_cache_compute=args.cpu_cache_compute, attn_sparsity=1.0,
compress_weight=args.compress_weight,
comp_weight_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=0, symmetric=False),
compress_cache=args.compress_cache,
comp_cache_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=2, symmetric=False))
logger.info(f"Init weights begin.")
tic = time.time()
model = OptLM(args.model, env, args.path, policy)
logger.info(f"Init weights end. Elapsed: {time.time() - tic:.2f} s")
if args.add_task_instruction:
prompt = lambda x: f"{task_instruction} {x}"
else:
prompt = lambda x: f"{x}"
trial_metrics = {"prec": [], "rec": [], "f1": [], "acc": []}
saved_prefix = None
tic = time.time()
for trial_num in range(args.num_trials):
np.random.seed(args.seed + trial_num)
queries = []
for _, row in test_data.iterrows():
serialized_r = row["text"]
if args.sample_method == "manual":
prefix_exs = prompt_utils.get_manual_prompt(args.data_dir, row)
elif args.sample_method == "validation_clusters":
if saved_prefix is None:
logger.info("Generating validation cluster prompt.")
saved_prefix = prompt_utils.get_validation_prompt(
args.validation_path,
num_examples=args.k,
task=task,
)
prefix_exs = saved_prefix
else:
if saved_prefix is None:
saved_prefix = prompt_utils.get_random_prompt(
pd_data_files["train"], num_examples=args.k
)
prefix_exs = saved_prefix
queries.append((prefix_exs + "\n" + serialized_r).strip())
gt = test_data["label_str"]
preds = []
idx = 0
for _ in range(args.num_print):
logger.info(prompt(queries[idx]))
tic = time.time()
input_ids_tmp = tokenizer(prompt(queries[idx]), padding="max_length",
return_tensors="np",
max_length=args.pad_to_seq_len).input_ids
logger.info(input_ids_tmp.shape)
output_ids_tmp = model.generate(input_ids_tmp,
do_sample=True,
temperature=args.temperature,
max_new_tokens=args.max_tokens,
stop=args.stop_token)
input_strs = tokenizer.batch_decode(input_ids_tmp, skip_special_tokens=True)
output_strs = tokenizer.batch_decode(output_ids_tmp, skip_special_tokens=True)
anwsers = [ output_strs[i][len(input_strs[i]):] for i in range(len(input_strs))]
logger.info(f"====> {anwsers[0]} <====")
preds.extend(anwsers)
idx += 1
logger.info(f"Current Inference query elapsed: {time.time() - tic:.2f} s")
# Save trial predictions
save_data = test_data.iloc[:args.num_print].copy(deep=True).reset_index()
gt = gt[:args.num_print]
save_data["preds"] = preds
save_data["queries"] = queries[:args.num_print]
prec, rec, acc, f1 = compute_metrics(preds, gt, task)
logger.info(
f"Metrics Trial {trial_num}\n"
f"Prec: {prec:.3f} Recall: {rec:.3f} Acc: {acc:.3f} F1: {f1:.3f}"
)
trial_metrics["rec"].append(rec)
trial_metrics["prec"].append(prec)
trial_metrics["acc"].append(acc)
trial_metrics["f1"].append(f1)
output_file = (
Path(args.output_dir)
/ f"{Path(args.data_dir).stem}"
/ f"{test_file}"
/ f"{args.run_tag}"
/ f"{args.k}k"
f"_{int(args.add_task_instruction)}inst"
f"_{int(args.class_balanced)}cb"
f"_{args.sample_method}"
f"_{args.model}"
f"_{args.num_print}run"
f"_{int(args.dry_run)}dry" / f"trial_{trial_num}.feather"
)
output_file.parent.mkdir(parents=True, exist_ok=True)
logger.info(f"Saved to {output_file}")
save_data.to_feather(output_file)
for k, values in list(trial_metrics.items()):
trial_metrics[f"{k}_avg"] = np.average(values)
trial_metrics[f"{k}_std"] = np.std(values)
output_metrics = output_file.parent / "metrics.json"
json.dump(trial_metrics, open(output_metrics, "w"))
logger.info(f"Final Metrics {json.dumps(trial_metrics, indent=4)}")
logger.info(f"Metrics dumped to {output_metrics}")
# Shutdown
logger.info("Shutdown FlexLLMGen...")
env.close_copy_threads()
def batch_query_test(args, task_instruction, test_data, task, pd_data_files, test_file):
# Initialize environment
tokenizer = get_tokenizer(args.model)
env = ExecutionEnv.create(args.offload_dir)
# Offloading policy
policy = Policy(args.gpu_batch_size, args.num_gpu_batches,
args.percent[0], args.percent[1],
args.percent[2], args.percent[3],
args.percent[4], args.percent[5],
overlap=True, sep_layer=True, pin_weight=args.pin_weight,
cpu_cache_compute=args.cpu_cache_compute, attn_sparsity=1.0,
compress_weight=args.compress_weight,
comp_weight_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=0, symmetric=False),
compress_cache=args.compress_cache,
comp_cache_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=2, symmetric=False))
logger.info(f"Init weights begin.")
tic = time.time()
model = OptLM(args.model, env, args.path, policy)
logger.info(f"Init weights end. Elapsed: {time.time() - tic:.2f} s.")
if args.add_task_instruction:
prompt = lambda x: f"{task_instruction} {x}"
else:
prompt = lambda x: f"{x}"
trial_metrics = {"prec": [], "rec": [], "f1": [], "acc": [], "total_time": [],
"output_throughput": [], "total_throughput": []}
saved_prefix = None
for trial_num in range(args.num_trials):
np.random.seed(args.seed + trial_num)
queries = []
for _, row in test_data.iterrows():
serialized_r = row["text"]
if args.sample_method == "manual":
prefix_exs = prompt_utils.get_manual_prompt(args.data_dir, row)
elif args.sample_method == "validation_clusters":
if saved_prefix is None:
logger.info("Generating validation cluster prompt.")
saved_prefix = prompt_utils.get_validation_prompt(
args.validation_path,
num_examples=args.k,
task=task,
)
prefix_exs = saved_prefix
else:
if saved_prefix is None:
saved_prefix = prompt_utils.get_random_prompt(
pd_data_files["train"], num_examples=args.k
)
prefix_exs = saved_prefix
queries.append((prefix_exs + "\n" + serialized_r).strip())
gt = test_data["label_str"]
preds = []
idx = 0
max_prompt_seq_length = 0
prompt_strs = []
for _ in range(args.num_run):
# if idx == 0:
# logger.info(f"This is a sample prompt: {prompt(queries[idx])}")
prompt_strs.append(prompt(queries[idx]))
current_prompt_tmp = tokenizer(prompt(queries[idx]), padding="max_length",
return_tensors="np", max_length=args.pad_to_seq_len).input_ids
# logger.info(f"Current prompt <{idx}> length: {current_prompt_tmp.shape[1]}")
max_prompt_seq_length = max(max_prompt_seq_length, current_prompt_tmp.shape[1])
idx += 1
logger.info(f"max_prompt_seq_length: {max_prompt_seq_length}")
tic = time.time()
input_ids = tokenizer(prompt_strs, padding="max_length",
return_tensors="np",
max_length=max_prompt_seq_length).input_ids
output_ids = []
flexllmgen_batch_size = args.gpu_batch_size*args.num_gpu_batches
num_batched_run = math.floor(args.num_run/flexllmgen_batch_size)
args.num_run = num_batched_run * flexllmgen_batch_size
input_ids = input_ids[0:args.num_run]
for i in tqdm(range(num_batched_run)):
input_ids_tmp = input_ids[i*flexllmgen_batch_size: (i+1)*flexllmgen_batch_size]
output_ids_tmp = model.generate(input_ids_tmp,
do_sample=True,
temperature=args.temperature,
max_new_tokens=args.max_tokens,
stop=args.stop_token)
output_ids.extend(output_ids_tmp)
toc = time.time()
input_strs = tokenizer.batch_decode(input_ids, skip_special_tokens=True)
output_strs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [output_strs[i][len(input_strs[i]):] for i in range(len(input_strs))]
total_time = time.time() - tic
total_prompt_tokens = args.num_run * max_prompt_seq_length
total_generate_tokens = args.num_run * args.max_tokens
output_throughput = total_generate_tokens/total_time
total_throughput = (total_prompt_tokens+total_generate_tokens)/total_time
logger.info(f"Batch inference run end. Elapsed: {total_time:.2f} s;")
logger.info(f"Output throughput: {output_throughput:.2f} token/s;")
logger.info(f"Total throughput: {total_throughput:.2f} token/s;")
# Save trial predictions
save_data = test_data.iloc[:args.num_run].copy(deep=True).reset_index()
gt = gt[:args.num_run]
save_data["preds"] = preds
save_data["queries"] = queries[:args.num_run]
prec, rec, acc, f1 = compute_metrics(preds, gt, task)
logger.info(
f"Metrics Trial {trial_num}\n"
f"Prec: {prec:.3f} Recall: {rec:.3f} Acc: {acc:.3f} F1: {f1:.3f} \n"
f"<FlexLLMGen> time: {total_time:.3f} \n"
f"<FlexLLMGen> output throughput: {output_throughput:.3f} \n"
f"<FlexLLMGen> total throughput: {total_throughput:.3f}"
)
trial_metrics["rec"].append(rec)
trial_metrics["prec"].append(prec)
trial_metrics["acc"].append(acc)
trial_metrics["f1"].append(f1)
trial_metrics["total_time"].append(total_time)
trial_metrics["output_throughput"].append(output_throughput)
trial_metrics["total_throughput"].append(total_throughput)
output_file = (
Path(args.output_dir)
/ f"{Path(args.data_dir).stem}"
/ f"{test_file}"
/ f"{args.run_tag}"
/ f"{args.k}k"
f"_{int(args.add_task_instruction)}inst"
f"_{int(args.class_balanced)}cb"
f"_{args.sample_method}"
f"_{args.model}"
f"_{args.num_run}run"
f"_{int(args.dry_run)}dry" / f"trial_{trial_num}.feather"
)
output_file.parent.mkdir(parents=True, exist_ok=True)
logger.info(f"Saved to {output_file}")
save_data.to_feather(output_file)
for k, values in list(trial_metrics.items()):
trial_metrics[f"{k}_avg"] = np.average(values)
trial_metrics[f"{k}_std"] = np.std(values)
output_metrics = output_file.parent / "metrics.json"
json.dump(trial_metrics, open(output_metrics, "w"))
logger.info(f"Final Metrics {json.dumps(trial_metrics, indent=4)}")
logger.info(f"Metrics dumped to {output_metrics}")
# Shutdown
logger.info("Shutdown FlexLLMGen...")
env.close_copy_threads()
def main():
"""Run main method."""
args = parse_args()
if args.num_trials < 1:
raise ValueError("num_trials must be greater than 0.")
# Get absolute path
args.data_dir = str(Path(args.data_dir).resolve())
setup_logger(args.output_dir)
logger.info(json.dumps(vars(args), indent=4))
# Will set seed for pandas
np.random.seed(args.seed)
test_file = "test" if args.do_test else "validation"
# Read pandas DF datasets
pd_data_files = data_utils.read_data(
data_dir=args.data_dir,
class_balanced=args.class_balanced,
add_instruction=False,
max_train_samples=-1,
max_train_percent=-1,
sep_tok=args.sep_tok,
nan_tok=args.nan_tok,
)
if test_file not in pd_data_files:
raise ValueError(f"Need {test_file} data")
train_data = pd_data_files["train"]
test_data = pd_data_files[test_file]
task = constants.DATA2TASK[args.data_dir]
logger.info(f"Using {args.task_instruction_idx} instruction idx")
task_instruction = constants.DATA2INSTRUCT[args.data_dir]
num_run = args.num_run
if args.num_run == -1:
num_run = test_data.shape[0]
num_run = min(num_run, test_data.shape[0])
logger.info(f"Train shape is {train_data.shape[0]}")
logger.info(f"Test shape is {test_data.shape[0]}")
logger.info(f"Running {num_run} examples for {args.num_trials} trials.")
if args.batch_run:
logger.info("Call batch_query_test")
batch_query_test(args, task_instruction, test_data, task, pd_data_files, test_file)
else:
logger.info("Call single_query_test")
single_query_test(args, task_instruction, test_data, task, pd_data_files, test_file)
if __name__ == "__main__":
main()