diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 8e5b37af..c842920f 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -113,14 +113,6 @@ jobs: using Pkg Pkg.develop(PackageSpec(path=pwd())) Pkg.instantiate()' - - run: | - julia --color=yes --project=docs/ -e ' - using Metalhead - # using Pkg; Pkg.activate("docs") - using Documenter - using Documenter: doctest - DocMeta.setdocmeta!(Metalhead, :DocTestSetup, :(using Metalhead); recursive=true) - doctest(Metalhead)' - run: julia --project=docs docs/make.jl env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} diff --git a/docs/Project.toml b/docs/Project.toml index 2bb540e4..2cb0db69 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -5,4 +5,8 @@ Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c" Images = "916415d5-f1e6-5110-898d-aaa5f9f070e0" LazyArtifacts = "4af54fe1-eca0-43a8-85a7-787d91b784e3" +Metalhead = "dbeba491-748d-5e0e-a39e-b530a07fa0cc" Optimisers = "3bd65402-5787-11e9-1adc-39752487f4e2" + +[compat] +Documenter = "1" diff --git a/docs/make.jl b/docs/make.jl index e1431c0b..cf482972 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -1,15 +1,12 @@ -using Documenter, Metalhead, Artifacts, LazyArtifacts, Images, DataAugmentation, Flux - -DocMeta.setdocmeta!(Metalhead, :DocTestSetup, :(using Metalhead); recursive = true) +using Documenter, Metalhead # copy readme into index.md open(joinpath(@__DIR__, "src", "index.md"), "w") do io write(io, read(joinpath(@__DIR__, "..", "README.md"), String)) end -makedocs(; modules = [Metalhead, Artifacts, LazyArtifacts, Images, DataAugmentation, Flux], +makedocs(; modules = [Metalhead], sitename = "Metalhead.jl", - doctest = false, pages = ["Home" => "index.md", "Tutorials" => [ "tutorials/quickstart.md", @@ -41,7 +38,8 @@ makedocs(; modules = [Metalhead, Artifacts, LazyArtifacts, Images, DataAugmentat "Model Utilities" => "api/utilities.md", ], ], - format = Documenter.HTML(; canonical = "https://fluxml.ai/Metalhead.jl/stable/", + warnonly = [:example_block, :missing_docs, :cross_references], + format = Documenter.HTML(canonical = "https://fluxml.ai/Metalhead.jl/stable/", # analytics = "UA-36890222-9", assets = ["assets/flux.css"], prettyurls = get(ENV, "CI", nothing) == "true")) diff --git a/src/Metalhead.jl b/src/Metalhead.jl index ced4ca44..d977bd69 100644 --- a/src/Metalhead.jl +++ b/src/Metalhead.jl @@ -13,12 +13,12 @@ using Random import Functors -# Utilities -include("utilities.jl") +# Model utilities include("core.jl") # Custom Layers include("layers/Layers.jl") +include("layers/utilities.jl") # layer utilities using .Layers # CNN models diff --git a/src/convnets/builders/resnet.jl b/src/convnets/builders/resnet.jl index 580baaa3..90bc6245 100644 --- a/src/convnets/builders/resnet.jl +++ b/src/convnets/builders/resnet.jl @@ -27,7 +27,7 @@ Creates a generic ResNet-like model. - `block_repeats`: This is a `Vector` of integers that specifies the number of repeats of each block in each stage. - `connection`: This is a function that determines the residual connection in the model. For - `resnets`, either of [`Metalhead.addact`](@ref) or [`Metalhead.actadd`](@ref) is recommended. + `resnets`, either of [`Metalhead.Layers.addact`](@ref) or [`Metalhead.Layers.actadd`](@ref) is recommended. - `classifier_fn`: This is a function that takes in the number of feature maps and returns a classifier. This is usually built as a closure using a function like [`Metalhead.create_classifier`](@ref). For example, if the number of output classes is `nclasses`, then the function can be defined as diff --git a/src/convnets/resnets/core.jl b/src/convnets/resnets/core.jl index 78603cf4..615ff0c0 100644 --- a/src/convnets/resnets/core.jl +++ b/src/convnets/resnets/core.jl @@ -371,7 +371,7 @@ Wide ResNet, ResNeXt and Res2Net. For an _even_ more generic model API, see [`Me - `inplanes`: The number of input channels in the first convolutional layer. - `reduction_factor`: The reduction factor used in the model. - `connection`: This is a function that determines the residual connection in the model. For - `resnets`, either of [`Metalhead.addact`](@ref) or [`Metalhead.actadd`](@ref) is recommended. + `resnets`, either of [`Metalhead.Layers.addact`](@ref) or [`Metalhead.Layers.actadd`](@ref) is recommended. These decide whether the residual connection is added before or after the activation function. - `norm_layer`: The normalisation layer to be used in the model. - `revnorm`: set to `true` to place the normalisation layers before the convolutions diff --git a/src/layers/Layers.jl b/src/layers/Layers.jl index aaaa2022..8cc9796e 100644 --- a/src/layers/Layers.jl +++ b/src/layers/Layers.jl @@ -12,7 +12,7 @@ using Random import Flux.testmode! -include("../utilities.jl") +include("utilities.jl") include("attention.jl") export MultiHeadSelfAttention diff --git a/src/layers/conv.jl b/src/layers/conv.jl index 6e720f30..1a75f3f1 100644 --- a/src/layers/conv.jl +++ b/src/layers/conv.jl @@ -24,7 +24,7 @@ Create a convolution + normalisation layer pair with activation. - `pad`: padding of the convolution kernel - `dilation`: dilation of the convolution kernel - `groups`: groups for the convolution kernel - - `weight`, `init`: initialization for the convolution kernel (see [`Flux.Conv`](@ref)) + - `weight`, `init`: initialization for the convolution kernel (see `Flux.Conv`) """ function conv_norm(kernel_size::Dims{2}, inplanes::Integer, outplanes::Integer, activation = relu; norm_layer = BatchNorm, revnorm::Bool = false, diff --git a/src/layers/mbconv.jl b/src/layers/mbconv.jl index 14e84f48..6300880e 100644 --- a/src/layers/mbconv.jl +++ b/src/layers/mbconv.jl @@ -26,7 +26,7 @@ See Fig. 3 in [reference](https://arxiv.org/abs/1704.04861v1). - `bias`: whether to use bias in the convolution layers. - `stride`: stride of the first convolution kernel - `pad`: padding of the first convolution kernel - - `weight`, `init`: initialization for the convolution kernel (see [`Flux.Conv`](@ref)) + - `weight`, `init`: initialization for the convolution kernel (see `Flux.Conv`) """ function dwsep_conv_norm(kernel_size::Dims{2}, inplanes::Integer, outplanes::Integer, activation = relu; norm_layer = BatchNorm, stride::Integer = 1, diff --git a/src/utilities.jl b/src/layers/utilities.jl similarity index 93% rename from src/utilities.jl rename to src/layers/utilities.jl index 74be4b2d..e491d747 100644 --- a/src/utilities.jl +++ b/src/layers/utilities.jl @@ -14,16 +14,16 @@ end Convenience function for applying an activation function to the output after summing up the input arrays. Useful as the `connection` argument for the block -function in [`Metalhead.resnet`](@ref). +function in `Metalhead.resnet`. """ addact(activation = relu, xs...) = activation(sum(xs)) """ actadd(activation = relu, xs...) -Convenience function for adding input arrays after applying an activation -function to them. Useful as the `connection` argument for the block function in -[`Metalhead.resnet`](@ref). +Convenience function for summing up the input arrays after applying an +activation function to them. Useful as the `connection` argument for the block +function in `Metalhead.resnet`. """ actadd(activation = relu, xs...) = sum(activation.(x) for x in xs) diff --git a/test/Project.toml b/test/Project.toml index 2a93eb04..f5c9dbb3 100644 --- a/test/Project.toml +++ b/test/Project.toml @@ -7,6 +7,7 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" TestImages = "5e47fb64-e119-507b-a336-dd2b206d9990" TestItemRunner = "f8b46487-2199-4994-9208-9a1283c18c0a" cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd" +Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6" [compat] CUDA = "4, 5" diff --git a/test/model_tests.jl b/test/model_tests.jl index 729701bc..7df7a7a4 100644 --- a/test/model_tests.jl +++ b/test/model_tests.jl @@ -2,6 +2,7 @@ using Metalhead, Images, TestImages using Flux: gradient, gpu using CUDA: CUDA, has_cuda +using Downloads export PRETRAINED_MODELS, TEST_FAST, @@ -72,7 +73,9 @@ const TEST_X = let img_array = convert(Array{Float32}, channelview(TEST_IMG)) end # ImageNet labels -const TEST_LBLS = readlines(download("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")) +const TEST_LBLS = readlines(Downloads.download( + "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt" +)) function acctest(model) ypred = gpu(model)(TEST_X) |> collect |> vec