-
-
Notifications
You must be signed in to change notification settings - Fork 332
/
Copy pathcGAN_mnist.jl
192 lines (160 loc) · 6.36 KB
/
cGAN_mnist.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
using Base.Iterators: partition
using Flux
using Flux.Optimise: update!
using Flux.Losses: logitbinarycrossentropy
using Images
using ImageMagick
using MLDatasets
using Statistics
using Parameters: @with_kw
using Random
using Printf
using CUDA
using Zygote
if has_cuda() # Check if CUDA is available
@info "CUDA is on"
CUDA.allowscalar(false)
end
@with_kw struct HyperParams
batch_size::Int = 128
latent_dim::Int = 100
nclasses::Int = 10
epochs::Int = 25
verbose_freq::Int = 1000
output_x::Int = 6 # No. of sample images to concatenate along x-axis
output_y::Int = 6 # No. of sample images to concatenate along y-axis
lr_dscr::Float64 = 0.0002
lr_gen::Float64 = 0.0002
end
struct Discriminator
d_labels # Submodel to take labels as input and convert them to the shape of image ie. (28, 28, 1, batch_size)
d_common
end
function discriminator(args)
d_labels = Chain(Dense(args.nclasses,784), x-> reshape(x, 28, 28, 1, size(x, 2))) |> gpu
d_common = Chain(Conv((3,3), 2=>128, pad=(1,1), stride=(2,2)),
x-> leakyrelu.(x, 0.2f0),
Dropout(0.4),
Conv((3,3), 128=>128, pad=(1,1), stride=(2,2), leakyrelu),
x-> leakyrelu.(x, 0.2f0),
x-> reshape(x, :, size(x, 4)),
Dropout(0.4),
Dense(6272, 1)) |> gpu
Discriminator(d_labels, d_common)
end
function (m::Discriminator)(x, y)
t = cat(m.d_labels(x), y, dims=3)
return m.d_common(t)
end
struct Generator
g_labels # Submodel to take labels as input and convert it to the shape of (7, 7, 1, batch_size)
g_latent # Submodel to take latent_dims as input and convert it to shape of (7, 7, 128, batch_size)
g_common
end
function generator(args)
g_labels = Chain(Dense(args.nclasses, 49), x-> reshape(x, 7 , 7 , 1 , size(x, 2))) |> gpu
g_latent = Chain(Dense(args.latent_dim, 6272), x-> leakyrelu.(x, 0.2f0), x-> reshape(x, 7, 7, 128, size(x, 2))) |> gpu
g_common = Chain(ConvTranspose((4, 4), 129=>128; stride=2, pad=1),
BatchNorm(128, leakyrelu),
Dropout(0.25),
ConvTranspose((4, 4), 128=>64; stride=2, pad=1),
BatchNorm(64, leakyrelu),
Conv((7, 7), 64=>1, tanh; stride=1, pad=3)) |> gpu
Generator(g_labels, g_latent, g_common)
end
function (m::Generator)(x, y)
t = cat(m.g_labels(x), m.g_latent(y), dims=3)
return m.g_common(t)
end
function load_data(hparams)
# MLDatasets.MNIST.download(i_accept_the_terms_of_use=true)
# Load MNIST dataset
images, labels = MNIST(:train)[:]
# Normalize to [-1, 1]
image_tensor = reshape(@.(2f0 * images - 1f0), 28, 28, 1, :)
y = float.(Flux.onehotbatch(labels, 0:hparams.nclasses-1))
# Partition into batches
data = [(image_tensor[:, :, :, r], y[:, r]) |> gpu for r in partition(1:60000, hparams.batch_size)]
return data
end
# Loss functions
function discr_loss(real_output, fake_output)
real_loss = logitbinarycrossentropy(real_output, 1f0)
fake_loss = logitbinarycrossentropy(fake_output, 0f0)
return (real_loss + fake_loss)
end
generator_loss(fake_output) = logitbinarycrossentropy(fake_output, 1f0)
function train_discr(discr, fake_data, fake_labels, original_data, label, opt_discr)
ps = params(discr.d_labels, discr.d_common)
loss, back = Zygote.pullback(ps) do
discr_loss(discr(label, original_data), discr(fake_labels, fake_data))
end
grads = back(1f0)
update!(opt_discr, ps, grads)
return loss
end
Zygote.@nograd train_discr
function train_gan(gen, discr, original_data, label, opt_gen, opt_discr, hparams)
# Random Gaussian Noise and Labels as input for the generator
noise = randn!(similar(original_data, (hparams.latent_dim, hparams.batch_size)))
labels = rand(0:hparams.nclasses-1, hparams.batch_size)
y = Flux.onehotbatch(labels, 0:hparams.nclasses-1)
noise , y = noise, float.(y) |> gpu
ps = params(gen.g_labels, gen.g_latent, gen.g_common)
loss = Dict()
loss["gen"], back = Zygote.pullback(ps) do
fake = gen(y, noise)
loss["discr"] = train_discr(discr, fake, y, original_data, label, opt_discr)
generator_loss(discr(y, fake))
end
grads = back(1f0)
update!(opt_gen, ps, grads)
return loss
end
function create_output_image(gen, fixed_noise, fixed_labels, hparams)
@eval Flux.istraining() = false
fake_images = @. cpu(gen(fixed_labels, fixed_noise))
@eval Flux.istraining() = true
image_array = permutedims(dropdims(reduce(vcat, reduce.(hcat, partition(fake_images, hparams.output_y))); dims=(3, 4)), (2, 1))
image_array = @. Gray(image_array + 1f0) / 2f0
return image_array
end
function train(; kws...)
hparams = HyperParams(kws...)
# Load the data
data = load_data(hparams)
fixed_noise = [randn(hparams.latent_dim, 1) |> gpu for _=1:hparams.output_x * hparams.output_y]
fixed_labels = [float.(Flux.onehotbatch(rand(0:hparams.nclasses-1, 1), 0:hparams.nclasses-1)) |> gpu
for _ =1:hparams.output_x * hparams.output_y]
# Discriminator
dscr = discriminator(hparams)
# Generator
gen = generator(hparams)
# Optimizers
opt_dscr = ADAM(hparams.lr_dscr, (0.5, 0.99))
opt_gen = ADAM(hparams.lr_gen, (0.5, 0.99))
# Check if the `output` directory exists or needed to be created
isdir("output")||mkdir("output")
# Training
train_steps = 0
for ep in 1:hparams.epochs
@info "Epoch $ep"
for (x, y) in data
# Update discriminator and generator
loss = train_gan(gen, dscr, x, y, opt_gen, opt_dscr, hparams)
if train_steps % hparams.verbose_freq == 0
@info("Train step $(train_steps), Discriminator loss = $(loss["discr"]), Generator loss = $(loss["gen"])")
# Save generated fake image
output_image = create_output_image(gen, fixed_noise, fixed_labels, hparams)
save(@sprintf("output/cgan_steps_%06d.png", train_steps), output_image)
end
train_steps += 1
end
end
output_image = create_output_image(gen, fixed_noise, fixed_labels, hparams)
save(@sprintf("output/cgan_steps_%06d.png", train_steps), output_image)
return Flux.onecold.(cpu(fixed_labels))
end
if abspath(PROGRAM_FILE) == @__FILE__
train()
end