forked from tremblaybenoit/MEGS-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
261 lines (245 loc) · 12.8 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#########################################################################################################
# MAIN
#########################################################################################################
configfile: "snakemake-config.yaml"
# Draw: snakemake --forceall --dag | dot -Tpng > dag.png
# TODO: Maybe remove "data" section from config (config['data']) file to make it simpler to read
# General rule to generate all data
rule megsai_all:
input:
# checkpoints = expand(config["model"]["checkpoint_path"]+"/{instrument}/"+config["model"]["checkpoint_file"]+".ckpt", instrument=config["model"]["instruments"]),
checkpoint = expand(config["model"]["checkpoint_path"]+"/{instrument}/"+f"{config['data']['eve_type']}_{config['data']['eve_instrument']}/"+config["model"]["checkpoint_file"], instrument=config["model"]["instruments"]),
maven_lvl3_data = f"{config['data']['maven_lvl3_dir']}/{config['data']['maven_lvl3_data']}",
fismp_earth_data = f"{config['data']['fismp_dir']}/{config['data']['fismp_earth_data']}",
fismp_mars_data = f"{config['data']['fismp_dir']}/{config['data']['fismp_mars_data']}",
fism2_data = expand(f"{config['data']['fism2_dir']}/"+"{fism2_type}"+f"/FISM_2014001_{config['data']['fism2_version']}.sav", fism2_type=config['data']['fism2_type']),
eve_standardized = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_eve_subdir']}/"+
f"{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['eve_standardized']}",
updated_matches_csv= f"{config['data']['matches_dir']}/{config['data']['preprocess_aia_subdir']}_"+
f"{config['data']['aia_resolution']}_stacks_{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['matches_csv']}"
# Draw the DAG of the pipeline
rule draw_dag:
output:
png='dag.png'
shell:
"snakemake --forceall --dag | dot -Tpng > {output.png}"
#########################################################################################################
# SETUP AND GENERATE TRAINING DATA
#########################################################################################################
## Download GOES soft X-ray flux data
rule download_goes_data:
output:
goes_data = f"{config['data']['goes_dir']}/{config['data']['goes_data']}"
params:
goes_dir = config['data']['goes_dir']
shell:
"""
mkdir -p {params.goes_dir} &&
gsutil -m cp -r gs://us-spi3s-landing/megs_ai/observational_data/GOES/goes.csv {output.goes_data}
"""
## Download EVE irradiance data
rule download_eve_data:
output:
eve_file = f"{config['data']['eve_dir']}/{config['data']['eve_type']}_L{config['data']['eve_level']}"+
"_2014001_008_01.fit.gz"
params:
eve_type = config['data']['eve_type'],
eve_level = config['data']['eve_level'],
eve_dir = config['data']['eve_dir']
shell:
"""
mkdir -p {params.eve_dir} &&
python -m irradiance.data.download_eve_data \
-start 2010-01-01T00:00:00 \
-end 2015-01-01T00:00:00 \
-type {params.eve_type} \
-level {params.eve_level} \
-save_dir {params.eve_dir}
"""
rule download_maven_data:
output:
maven_lvl3_data = f"{config['data']['maven_lvl3_dir']}/{config['data']['maven_lvl3_data']}"
params:
maven_dir = config['data']['maven_dir'],
maven_lvl2_dir = config['data']['maven_lvl2_dir'],
maven_lvl3_dir = config['data']['maven_lvl3_dir']
shell:
"""
mkdir -p {params.maven_dir} &&
mkdir -p {params.maven_lvl2_dir} &&
mkdir -p {params.maven_lvl3_dir} &&
gsutil -m cp -r gs://us-spi3s-landing/megs_ai/observational_data/MAVEN/level3/mvn_euv_l3_daily.csv {output.maven_lvl3_data}
"""
rule download_fismp_data:
output:
fismp_earth_data = f"{config['data']['fismp_dir']}/{config['data']['fismp_earth_data']}",
fismp_mars_data = f"{config['data']['fismp_dir']}/{config['data']['fismp_mars_data']}"
params:
fismp_dir = config['data']['fismp_dir']
shell:
"""
mkdir -p {params.fismp_dir} &&
gsutil -m cp -r gs://us-spi3s-landing/megs_ai/observational_data/FISM-P/fism_p_spectrum_earth_l2v01_r00_l3v01_r00_prelim.nc {output.fismp_earth_data} &&
gsutil -m cp -r gs://us-spi3s-landing/megs_ai/observational_data/FISM-P/fism_p_spectrum_mars_l2v01_r00_l3v01_r00_prelim.nc {output.fismp_mars_data}
"""
rule download_fism2_data:
output:
fism2_data = f"{config['data']['fism2_dir']}/"+"{fism2_type}"+f"/FISM_2014001_{config['data']['fism2_version']}.sav"
params:
fism2_dir = config['data']['fism2_dir'],
fism2_type = "{fism2_type}",
fism2_version = config['data']['fism2_version'],
fism2_url = config['data']['fism2_url']
shell:
"""
mkdir -p {params.fism2_dir} &&
python -m irradiance.data.download_fism2 \
-start 2010-01-01T00:00:00 \
-end 2014-05-10T23:59:59 \
-type {params.fism2_type} \
-version {params.fism2_version} \
-url {params.fism2_url} \
-save_dir {params.fism2_dir}
"""
## Generate CDF file containing EVE irradiance data
rule generate_eve_netcdf:
input:
eve_dir = config['data']['eve_dir'],
eve_file = f"{config['data']['eve_dir']}/{config['data']['eve_type']}_L{config['data']['eve_level']}"+
"_2014001_008_01.fit.gz"
output:
eve_data = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_eve_subdir']}/{config['data']['eve_type']}_{config['data']['eve_instrument']}_"+
f"{config['data']['eve_data']}"
params:
eve_type = config['data']['eve_type'],
eve_level = config['data']['eve_level'],
eve_instrument = config['data']['eve_instrument'],
shell:
"""
python -m irradiance.preprocess.generate_eve_netcdf \
-start 2010-01-01T00:00:00 \
-end 2015-01-01T00:00:00 \
-type {params.eve_type} \
-level {params.eve_level} \
-instrument {params.eve_instrument} \
-data_dir {input.eve_dir} \
-save_path {output.eve_data}
"""
## Generates matches in time between EVE data and AIA data
rule generate_matches_time:
input:
goes_data = config['data']['goes_dir']+"/"+config['data']['goes_data'],
eve_data = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_eve_subdir']}/{config['data']['eve_type']}_{config['data']['eve_instrument']}_"+
f"{config['data']['eve_data']}",
imager_dir = config['data']['aia_dir']
output:
matches_csv = f"{config['data']['matches_dir']}/{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['matches_csv']}"
params:
eve_to_imager_dt = config['data']['eve_cutoff'],
imager_dt = config['data']['aia_cutoff'],
imager_wl = config['data']['aia_wl'],
matches_dir = config['data']['matches_dir']
shell:
"""
mkdir -p {params.matches_dir} &&
python -m irradiance.preprocess.generate_matches_time \
-imager_dir {input.imager_dir} \
-imager_wl {params.imager_wl} \
-imager_dt {params.imager_dt} \
-goes_data {input.goes_data} \
-eve_data {input.eve_data} \
-output_path {output.matches_csv} \
-eve_to_imager_dt {params.eve_to_imager_dt}
"""
## Standardizes EVE data (for which matches were found) and generates statistics
rule generate_eve_standardized:
input:
eve_data = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_eve_subdir']}/{config['data']['eve_type']}_{config['data']['eve_instrument']}_"+
f"{config['data']['eve_data']}",
matches_csv = f"{config['data']['matches_dir']}/{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['matches_csv']}"
output:
eve_standardized = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_eve_subdir']}/"+
f"{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['eve_standardized']}",
eve_stats = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_eve_subdir']}/"+
f"{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['eve_stats']}"
params:
matches_eve_dir = f"{config['data']['matches_dir']}"
shell:
"""
mkdir -p {params.matches_eve_dir} &&
python -m irradiance.preprocess.generate_eve_standardized \
-eve_data {input.eve_data} \
-matches_csv {input.matches_csv} \
-output_data {output.eve_standardized} \
-output_stats {output.eve_stats}
"""
## Generates donwnscaled stacks of the AIA channels
rule generate_imager_stacks:
input:
imager_dir = config['data']['aia_dir'],
matches_csv = f"{config['data']['matches_dir']}/{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['matches_csv']}"
params:
suffix = f"{config['data']['eve_type']}_{config['data']['eve_instrument']}",
imager_resolution = config['data']['aia_resolution'],
imager_reproject = config['data']['aia_reproject'],
matches_imager_dir = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_aia_subdir']}_{config['data']['aia_resolution']}"
output:
matches_csv = f"{config['data']['matches_dir']}/{config['data']['preprocess_aia_subdir']}_"+
f"{config['data']['aia_resolution']}_stacks_{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['matches_csv']}",
imager_stats = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_aia_subdir']}_"+
f"{config['data']['aia_resolution']}_{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['aia_stats']}"
shell:
"""
mkdir -p {params.matches_imager_dir} &&
python -m irradiance.preprocess.generate_imager_stacks \
-imager_path {input.imager_dir} \
-imager_resolution {params.imager_resolution} \
-imager_reproject {params.imager_reproject} \
-imager_stats {output.imager_stats} \
-matches_csv {input.matches_csv} \
-matches_output {output.matches_csv} \
-matches_stacks {params.matches_imager_dir}
"""
#########################################################################################################
# TRAIN & TEST MODEL
#########################################################################################################
rule megsai_train:
input:
matches_table = f"{config['data']['matches_dir']}/{config['data']['preprocess_aia_subdir']}_"+
f"{config['data']['aia_resolution']}_stacks_{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['matches_csv']}",
eve_converted_data = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_eve_subdir']}/"+
f"{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['eve_standardized']}",
eve_stats = f"{config['data']['preprocess_dir']}/{config['data']['preprocess_eve_subdir']}/"+
f"{config['data']['eve_type']}_"+
f"{config['data']['eve_instrument']}_{config['data']['eve_stats']}"
params:
instrument = "{instrument}",
config_file = config["model"]["config_file"],
checkpoint_path = config["model"]["checkpoint_path"]+"/{instrument}/"+f"{config['data']['eve_type']}_{config['data']['eve_instrument']}"
# checkpoint_file = config["model"]["checkpoint_path"]+"/{instrument}/"+f"{config['data']['eve_type']}_{config['data']['eve_instrument']}/"+config["model"]["checkpoint_file"]
output:
checkpoint = config["model"]["checkpoint_path"]+"/{instrument}/"+f"{config['data']['eve_type']}_{config['data']['eve_instrument']}/"+config["model"]["checkpoint_file"]
resources:
nvidia_gpu = 1
shell:
"""
mkdir -p {params.checkpoint_path} &&
python -m irradiance.train \
-checkpoint {output.checkpoint} \
-model {params.config_file} \
-matches_table {input.matches_table} \
-eve_data {input.eve_converted_data} \
-eve_norm {input.eve_stats} \
-instrument {params.instrument}
"""