-
Notifications
You must be signed in to change notification settings - Fork 8
/
Calibrating.cpp
493 lines (437 loc) · 15.3 KB
/
Calibrating.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#include "Calibrating.h"
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <core/types_c.h>
#include <core/core_c.h>
#include <imgproc/imgproc_c.h>
#include <iostream>
#include <string>
using namespace cv;
using namespace std;
Calibration::Calibration(){}
Calibration::Calibration(cv::Mat originImg, cv::Mat grayImg, cv::Mat binaryImg)
{
this->originImg = originImg;
this->grayImg = grayImg;
this->binaryImg = binaryImg;
}
cv::Mat Calibration::getOriginImg(){ return this->originImg; }
cv::Mat Calibration::getGrayImg(){ return this->grayImg; }
cv::Mat Calibration::getBinaryImg(){ return this->binaryImg; }
std::vector<cv::Point2f> Calibration::getCorners(){ return this->corners; }
std::vector<cv::Point2f> Calibration::getInnerDots(){ return this->innerDots; }
void Calibration::setCorners(std::vector<cv::Point2f> corners){ this->corners = corners; }
void Calibration::setInnerDots(std::vector<cv::Point2f> innerDots){ this->innerDots = innerDots; }
CameraParams::CameraParams()
{
this->cameraMatrix = Mat(3, 3, CV_32FC1, cv::Scalar::all(0));
this->distCoeffs = Mat(1, 5, CV_32FC1, cv::Scalar::all(0));
}
cv::Mat CameraParams::getCameraMatrix(){ return this->cameraMatrix; }
cv::Mat CameraParams::getDistCoeffs(){ return this->distCoeffs; }
std::vector<cv::Mat> CameraParams::getTvecsMat(){ return this->tvecsMat; }
std::vector<cv::Mat> CameraParams::getRvecsMat(){ return this->rvecsMat; }
void CameraParams::setCameraMatrix(cv::Mat cameraMatrix){ this->cameraMatrix = cameraMatrix; }
void CameraParams::setDistCoeffs(cv::Mat distCoeffs){ this->distCoeffs = distCoeffs; }
void CameraParams::setTvecsMat(std::vector<cv::Mat> tvecsMat){ this->tvecsMat = tvecsMat; }
void CameraParams::setRvecsMat(std::vector<cv::Mat> rvecsMat){ this->rvecsMat = rvecsMat; }
// 对数组排序(升序)
void sortArray(double a[], int length)
{
int i, j, temp;
for(i = 0; i < length; ++i)
{
for(j = i + 1; j < length; ++j)
{
if(a[j] < a[i])
{
temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
}
}
// 获得两点间的欧氏距离
double getDistance (cv::Point2f point1, cv::Point2f point2)
{
double distance = sqrtf(powf((point1.x - point2.x),2) + powf((point1.y - point2.y),2));
return distance;
}
// 将point类型点转为point2f类型点
std::vector<cv::Point2f> point2point2f(std::vector<cv::Point> points)
{
vector<Point2f> resPoints;
for(int i = 0; i < points.size(); i++)
{
Point2f p = Point2f(points[i].x, points[i].y);
resPoints.push_back(p);
}
return resPoints;
}
// 将point2f类型点转为point类型点
std::vector<cv::Point> point2f2point(std::vector<cv::Point2f> points)
{
vector<Point> resPoints;
for(int i = 0; i < points.size(); i++)
{
Point p = Point(points[i].x, points[i].y);
resPoints.push_back(p);
}
return resPoints;
}
// 绘点或线
cv::Mat drawPoints(std::string title, cv::Mat img, std::vector<cv::Point2f> points, int pointSize, cv::Scalar scalar, bool isLine)
{
Mat showImg;
if(img.type() == 0)
cvtColor(img, showImg, CV_GRAY2BGR);
else
showImg = img.clone();
if(!isLine)
{
for(int i = 0; i < points.size(); i++)
{
circle(showImg, points[i], pointSize, scalar, -1);
}
}
else
{
vector<vector<Point>> contours;
contours.push_back(point2f2point(points));
drawContours(showImg, contours, -1, scalar, pointSize);
}
imwrite(title, showImg);
return showImg;
}
// 获得当前图片能够正常标定的标定板面积下限
int getAreaThreshold(cv::Mat img)
{
int minLine = img.rows > img.cols ? img.cols : img.rows;
minLine = minLine / 6;
return minLine * minLine;
}
// 对图像进行均值滤波
cv::Mat imgFilter_mean(cv::Mat imgSrc, int winSize)
{
Mat imgRes;
blur(imgSrc, imgRes, Size(winSize, winSize), Point(-1,-1), BORDER_DEFAULT);
return imgRes;
}
// 获取二值图像,使用OTSU自适应阈值算法
cv::Mat getOtsu(cv::Mat sourceImg, int splitNum)
{
Mat grayImg = sourceImg.clone();
// 分割图像
vector<Mat> subImgs;
int srcHeight = grayImg.rows;
int srcWidth = grayImg.cols;
int subHeight = srcHeight / splitNum;
int subWeight = srcWidth / splitNum;
for(int i = 0; i < splitNum; i++)
{
for(int j = 0; j < splitNum; j++)
{
if(i*subWeight <= srcWidth && j*subHeight <= srcHeight)
{
Mat temImg = Mat::zeros(Size(subWeight, subHeight), CV_8U);
Mat imgROI = grayImg(Rect(i*subWeight, j*subHeight, temImg.cols, temImg.rows));
addWeighted(temImg, 1, imgROI, 1, 0, temImg);
// OTSU
threshold(temImg, temImg, 0, 255, THRESH_OTSU);
temImg.copyTo(imgROI);
}
else
{
break;
}
}
}
return grayImg;
}
// 手动二值处理,严格二值化
cv::Mat strictBinary(cv::Mat img)
{
for(int i = 0; i < img.rows; i++) {
for(int j = 0; j < img.cols; j++) {
if(int(img.at<uchar>(i, j)) > 127)
img.at<uchar>(i, j) = 255;
else
img.at<uchar>(i, j) = 0;
}
}
return img;
}
// 形态学开闭操作
cv::Mat noiceReduction(cv::Mat sourceImg, cv::MorphShapes shapes, cv::Size size, cv::MorphTypes operation)
{
Mat kernel = getStructuringElement(shapes, size);
Mat resImg;
morphologyEx(sourceImg, resImg, operation, kernel);
return resImg;
}
// 查找内五边形
std::vector<cv::Point2f> findPentagon(cv::Mat img)
{
// 查找轮廓
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(img, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point());
// 查找几何图像
int staticArea = getAreaThreshold(img);// 面积门限
vector<vector<Point>> contours_poly;
for(int i = 0; i < contours.size(); i++)
{
double acreage = contourArea(contours[i], true);
if(acreage > staticArea)
{
vector<Point> contoursPoly;
approxPolyDP(contours[i], contoursPoly, 8, true);
contours_poly.push_back(contoursPoly);
}
}
// 查找五边形
vector<Point> contours_pentagon;// 五边形点,未排序
for(int i = 0; i < contours_poly.size(); i++)
{
if(isPentagon(contours_poly[i]))
{
contours_pentagon = contours_poly[i];
break;
}
}
// 转point2f
vector<Point2f> pentagonContours = point2point2f(contours_pentagon);// 五边形点,未排序
return pentagonContours;
}
// 确定是否是五边形
bool isPentagon(std::vector<cv::Point> contours)
{
bool isPentagon = false;
if(contours.size() == 5)
{
Point p1 = Point(contours[0].x, contours[0].y);
Point p2 = Point(contours[1].x, contours[1].y);
Point p3 = Point(contours[2].x, contours[2].y);
Point p4 = Point(contours[3].x, contours[3].y);
Point p5 = Point(contours[4].x, contours[4].y);
double lines[5];
lines[0] = getDistance(p1, p2);
lines[1] = getDistance(p2, p3);
lines[2] = getDistance(p3, p4);
lines[3] = getDistance(p4, p5);
lines[4] = getDistance(p5, p1);
sortArray(lines, 5);
double shortRate = lines[0] / lines[1];
double secondRate = lines[1] / lines[2];
double thirdRate = lines[2] / lines[3];
double longRate = lines[3] / lines[4];
if(shortRate < 0.3 && secondRate > 0.7 && thirdRate > 0.8 && longRate > 0.8)
{
isPentagon = true;
}
}
return isPentagon;
}
// 获得内四边形四点
std::vector<cv::Point2f> getInnerQuar(std::vector<cv::Point2f> contours)
{
Point2f points[5];
points[0] = Point2f(contours[0].x, contours[0].y);
points[1] = Point2f(contours[1].x, contours[1].y);
points[2] = Point2f(contours[2].x, contours[2].y);
points[3] = Point2f(contours[3].x, contours[3].y);
points[4] = Point2f(contours[4].x, contours[4].y);
int m,n;// 短边两点下标
double minDistance = getDistance(points[0], points[1]);
m=0, n=1;
for(int i = 1; i < 5; i++)
{
if(i == 4)
{
double distance = getDistance(points[i], points[0]);
if(distance < minDistance)
{
m = i;
n = 0;
minDistance = distance;
}
}
else
{
double distance = getDistance(points[i], points[i+1]);
if(distance < minDistance)
{
m = i;
n = i+1;
minDistance = distance;
}
}
}
int w,u;// 两条线段的另两点
w = (m - 1 + 5) % 5;
u = (n + 1 + 5) % 5;
Point2f crossPoint1 = crossPoint(points[m], points[w], points[n], points[u]);
vector<Point2f> resContours;
resContours.push_back(crossPoint1);
resContours.push_back(points[u]);
resContours.push_back(points[(u+1+5)% 5]);
resContours.push_back(points[w]);
return resContours;// 四边形点,已排序
}
// 四点获得两直线交点
cv::Point2f crossPoint(cv::Point2f point1, cv::Point2f point2, cv::Point2f point3, cv::Point2f point4)
{
//计算点1,2形成直线与点3,4形成直线交点
//如果平行或有无穷个交点就取点2和3的中间点
int x, y;
int X1 = point1.x - point2.x, Y1 = point1.y - point2.y, X2 = point3.x - point4.x, Y2 = point3.y - point4.y;
if (X1*Y2 == X2*Y1)return Point((point2.x+point3.x)/2,(point2.y+point3.y)/2);
int A = X1*point1.y - Y1*point1.x,B= X2*point3.y - Y2*point3.x;
y = (A*Y2 - B*Y1) / (X1*Y2 - X2*Y1);
x = (B*X1-A*X2) / (Y1*X2 - Y2*X1);
return Point2f(x, y);
}
// 通过原图内四边形四点获得透视变换后正方形四点
std::vector<cv::Point2f> createRightRecPoints(std::vector<cv::Point2f> contours)
{
Point2f p1 = Point(contours[0].x, contours[0].y);
Point2f p2 = Point(contours[1].x, contours[1].y);
Point2f p3 = Point(contours[2].x, contours[2].y);
Point2f p4 = Point(contours[3].x, contours[3].y);
double lines[4];
lines[0] = getDistance(p1, p2);
lines[1] = getDistance(p2, p3);
lines[2] = getDistance(p3, p4);
lines[3] = getDistance(p4, p1);
sortArray(lines, 4);
int shortLine = (int) lines[0];
vector<Point2f> resContours;
resContours.push_back(Point2f(0,0));
resContours.push_back(Point2f(shortLine,0));
resContours.push_back(Point2f(shortLine,shortLine));
resContours.push_back(Point2f(0,shortLine));
return resContours;
}
// 根据透视变换后的内四边形获得所有理想中心点
std::vector<cv::Point2f> getAllIdeaInnerDots(std::vector<cv::Point2f> contours)
{
Point2f p1 = Point2f(contours[0].x, contours[0].y);
Point2f p2 = Point2f(contours[1].x, contours[1].y);
double shortLine = getDistance(p1, p2);
double distance1 = shortLine*(2.0/19.0);
double distance2 = shortLine*(2.5/19.0);
vector<Point2f> points;
Point2f a = Point2f(p1.x+distance1, p1.y+distance1);
for(int j = 0; j < 7; j++)
{
points.push_back(a);
for(int i = 0; i < 6; i++)
{
points.push_back(Point(a.x+distance2, a.y));
a = Point(a.x+distance2, a.y);
}
a = Point(p1.x+distance1, a.y+distance2);
}
return points;
}
// 获取所有圆点中心
std::vector<cv::Point2f> getAllCorePoints(cv::Mat img, cv::Mat binaryImg, std::vector<cv::Point2f> ideaInnerDots)
{
double roiSize = 0.9;// 选取矩阵的大小
Mat grayImg = img.clone();
bitwise_not(binaryImg, binaryImg);
// 准备模板
for(int i = 0; i < binaryImg.rows; i++) {
for(int j = 0; j < binaryImg.cols; j++) {
if(int(binaryImg.at<uchar>( i, j))>125)
binaryImg.at<uchar>( i, j) = 255;
else
binaryImg.at<uchar>( i, j) = 1;
}
}
grayImg = grayImg.mul(binaryImg);// 模板乘
vector<Point2f> rightPoints;
double rightInterval = getDistance(ideaInnerDots[0], ideaInnerDots[1]);
rightInterval = (int) (rightInterval * roiSize);
for(int i = 0; i < ideaInnerDots.size(); i++)
{
rightPoints.push_back(getCore(grayImg, ideaInnerDots[i], rightInterval, rightInterval));
}
return rightPoints;
}
// 局部中心坐标转全局中心坐标
cv::Point2f getCore(cv::Mat img, cv::Point2f ideaPoint, int width, int height)
{
Mat grayImg = img.clone();
Mat targetImg = Mat::zeros(Size(width, height), CV_8U);
Mat imgROI = grayImg(Rect(ideaPoint.x - width/2, ideaPoint.y - height/2, targetImg.rows, targetImg.cols));
addWeighted(targetImg, 1, imgROI, 1, 0, targetImg);
bitwise_not(targetImg, targetImg);
Point2f center = grayCenter(targetImg);
// stringstream ss;
// ss<<ideaPoint.y<<ideaPoint.x;
// imshow(ss.str(), targetImg);
center.x = cvRound(ideaPoint.x - width/2 + center.x);
center.y = cvRound(ideaPoint.y - height/2 + center.y);
return center;
}
// 灰度重心法
cv::Point2f grayCenter(cv::Mat& img_gray)
{
Point2f Center;
int i, j;
double sumval = 0;
MatIterator_<uchar> it, end;
for (it = img_gray.begin<uchar>(), end = img_gray.end<uchar>(); it != end; it++)
{
sumval += (*it);
}
Center.x = Center.y = 0;
double x = 0, y = 0;
for (int i = 0; i < img_gray.cols; i++)
{
for (int j = 0; j < img_gray.rows; j++)
{
double s = img_gray.at<uchar>(j, i);
x += i * s / sumval;
y += j * s / sumval;
}
}
Center.x = cvRound(x);
Center.y = cvRound(y);
return Center;
}
// 获取相机参数
CameraParams getCameraParams(std::vector<cv::Point2f> innerDots0, std::vector<cv::Point2f> ideaInnerDots, cv::Size imgSize)
{
CameraParams cameraParams = CameraParams();
vector<vector<Point2f>> innerDots;
innerDots.push_back(innerDots0);
vector<vector<Point3f>> objectPoints;
objectPoints.push_back(getWorldPoints(ideaInnerDots));
Mat cameraMatrix = Mat(3, 3, CV_32FC1, cv::Scalar::all(0));
Mat distCoeffs = Mat(1, 5, CV_32FC1, cv::Scalar::all(0));
vector<Mat> tvecsMat;
vector<Mat> rvecsMat;
calibrateCamera(objectPoints, innerDots, imgSize, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, CALIB_FIX_K3);
cameraParams.setCameraMatrix(cameraMatrix);
cameraParams.setDistCoeffs(distCoeffs);
cameraParams.setTvecsMat(tvecsMat);
cameraParams.setRvecsMat(rvecsMat);
return cameraParams;
}
// 获取世界坐标
std::vector<cv::Point3f> getWorldPoints(std::vector<cv::Point2f> contours_realPoints)
{
vector<Point3f> realPoint;
for(int i = 0; i < contours_realPoints.size(); i++)
{
Point3f tempPoint;
tempPoint.x = contours_realPoints[i].x;
tempPoint.y = contours_realPoints[i].y;
tempPoint.z = 0;
realPoint.push_back(tempPoint);
}
return realPoint;
}