-
Notifications
You must be signed in to change notification settings - Fork 4
/
TwoLayer.py
188 lines (145 loc) · 5.29 KB
/
TwoLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from plxscripting.easy import *
import math
import statistics
def Calculation(gene, s_i, g_i, xloc, Vy):
# Read Gene Data
X = gene[0] #Location of the trench
D = gene[1] #Depth of the trench
L = gene[2] #Thickness of the first layer
W = gene[3] #Width of the trench
Gref = gene[4] #Shear modulud of the first layer
GeoFoam =math.ceil(gene[5]) #Type of geofoam
# Config the Plaxis
s_i, g_i = new_server('localhost', 10000, password='gkiePHMehran7075')
s_i.new()
g_i.SoilContour.initializerectangular(0, 0, 70, 25)
borehole = g_i.borehole(0)
g_i.soillayer(L)
g_i.soillayer(25)
g_i.setproperties("ModelType", "Axisymmetry")
material1 = g_i.soilmat()
material1.setproperties(
"MaterialName", "Soil1",
"Colour", 1887942,
"SoilModel", 1,
"gammaUnsat", 20,
"gammaSat", 20,
"Gref", Gref,
"nu", 0.3,
"cref", 0,
"phi", 0,
"RayleighBeta", 0.0003183)
material2 = g_i.soilmat()
material2.setproperties(
"MaterialName", "Soil2",
"Colour", 15262369,
"SoilModel", 1,
"gammaUnsat", 20,
"gammaSat", 20,
"Gref", 326198,
"nu", 0.3,
"cref", 0,
"phi", 0,
"RayleighBeta", 0.0003183)
if GeoFoam == 1: #
A = 0.15
B = 1300
elif GeoFoam == 2:
A = 0.15
B = 1300
elif GeoFoam == 3:
A = 0.15
B = 1300
elif GeoFoam == 4:
A = 0.15
B = 1300
elif GeoFoam == 5:
A = 0.15
B = 1300
elif GeoFoam == 6:
A = 0.15
B = 1300
material3 = g_i.soilmat()
material3.setproperties(
"MaterialName", "Geofoam",
"Colour", 9079434,
"SoilModel", 1,
"gammaUnsat", A,
"gammaSat", A,
"Gref", B,
"nu", 0.1,
"cref", 0)
g_i.setmaterial(g_i.Soil_1, material1)
g_i.setmaterial(g_i.Soil_2, material2)
g_i.gotostructures()
g_i.plate((0, 0), (0.36, 0))
g_i.lineload((0, 0), (0.36, 0))
g_i.polygon((0, -15), (60, -15), (60, 0), (0, 0))
g_i.polygon((X-W/2, 0), (X+W/2, 0), (X+W/2, 0-D), (X-W/2, 0-D))
EA = 1800000
EI = 1350000
nu = 0.01
w = 1
d = math.sqrt(12 * EI / EA)
E = EA / d
G = E / (2 * (1 + nu))
g_i.platemat(('MaterialName', 'wall'), ('Gref', G), \
('d', d), ('nu', nu), ('EA', EA), ('EA2', EA),\
('EI', EI), ('w', w), ('PreventPunching', True))
g_i.Line_1.Plate.setmaterial(g_i.wall)
g_i.gotomesh()
g_i.BoreholePolygon_1_Polygon_1_Polygon_2_1.CoarsenessFactor = 0.1
g_i.BoreholePolygon_1_Polygon_1_1.CoarsenessFactor = 0.3
g_i.BoreholePolygon_2_Polygon_1_1.CoarsenessFactor = 0.3
g_i.BoreholePolygon_2_1.CoarsenessFactor = 0.7
g_i.BoreholePolygon_1.CoarsenessFactor = 0.7
g_i.BoreholePolygon_1_1.CoarsenessFactor = 0.7
g_i.Line_1_Line_2_1.CoarsenessFactor = 0.075
g_i.mesh(0.05)
g_i.gotostages()
phase1 = g_i.phase(g_i.phases[0])
g_i.set(g_i.InitialPhase.DeformCalcType,"Gravity loading")
g_i.Line_1_Line_2_1.activate(g_i.phase_1)
phase2 = g_i.phase(g_i.phases[1])
g_i.BoreholePolygon_1_Polygon_1_Polygon_2_1.deactivate(g_i.phase_2)
phase3 = g_i.phase(g_i.phases[2])
g_i.Soil_1_Soil_3_Soil_4_1.Material[g_i.Phase_3] = material3
phase4 = g_i.phase(g_i.phases[3])
g_i.BoreholePolygon_1_Polygon_1_Polygon_2_1.activate(g_i.phase_4)
phase5 = g_i.phase(g_i.phases[4])
g_i.set(g_i.phase_5.DeformCalcType,"Dynamic")
g_i.set(g_i.Phase_5.Deform.TimeIntervalSeconds, 0.5)
g_i.set(g_i.Phase_5.Deform.ResetDisplacementsToZero, True)
g_i.DynLineLoad_1_1.activate(g_i.phase_5)
g_i.set(g_i.phase_5.DeformCalcType,"Dynamic")
g_i.DynLineLoad_1_1.qy_start[g_i.Phase_5] = -26
g_i.loadmultiplier()
g_i.set(g_i.LoadMultiplier_1.Signal, "Harmonic")
g_i.set(g_i.LoadMultiplier_1.Amplitude, 1)
g_i.set(g_i.LoadMultiplier_1.Frequency, 50)
g_i.DynLineLoad_1_1.Multipliery[g_i.Phase_5] = g_i.LoadMultiplier_1
g_i.Dynamics.BoundaryXMin[g_i.Phase_5] = "None"
g_i.Dynamics.BoundaryYMin[g_i.Phase_5] = "Viscous"
phase6 = g_i.phase(g_i.phases[5])
g_i.set(g_i.phase_6.DeformCalcType,"Dynamic")
g_i.set(g_i.Phase_6.Deform.TimeIntervalSeconds, 0.5)
g_i.DynLineLoad_1_1.activate(g_i.phase_6)
g_i.set(g_i.LoadMultiplier_1.Signal, "Harmonic")
g_i.set(g_i.LoadMultiplier_1.Amplitude, 1)
g_i.set(g_i.LoadMultiplier_1.Frequency, 50)
g_i.DynLineLoad_1_1.Multipliery[g_i.Phase_6] = g_i.LoadMultiplier_1
g_i.Dynamics.BoundaryXMin[g_i.Phase_5] = "None"
g_i.Dynamics.BoundaryYMin[g_i.Phase_5] = "Viscous"
g_i.calculate()
outpu_port = g_i.view(phase6)
s_o, g_o = new_server('localhost', 10001, password='gkiePHMehran7075')
Npoints = len(xloc)
thresh = X + W / 2
value = []
for k in range(0, Npoints):
if (xloc[k]>thresh) and (xloc[k]<(thresh+30)):
vy = abs(float(g_o.getsingleresult(g_o.Phase_6, g_o.ResultTypes.Soil.Vy, (xloc[k], 0))))
value.append(vy/Vy[k])
g_o.close()
Ar = statistics.mean(value)
return Ar