-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
296 lines (270 loc) · 14.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import sys
import random
import pandas as pd
import torch
import argparse
import numpy as np
from domiknows.graph import Graph, Concept, Relation
from program_declaration import program_declaration
from reader import DomiKnowS_reader
import tqdm
from domiknows.program.model.base import Mode
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, accuracy_score
def eval(program, testing_set, cur_device, args):
from graph import answer_class
labels = ["Yes", "No"]
accuracy_ILP = 0
accuracy = 0
count = 0
count_datanode = 0
satisfy_constraint_rate = 0
pred = []
actual = []
for datanode in tqdm.tqdm(program.populate(testing_set, device=cur_device), "Manually Testing"):
count_datanode += 1
for question in datanode.getChildDataNodes():
count += 1
label = labels[int(question.getAttribute(answer_class, "label"))]
pred_label = int(torch.argmax(question.getAttribute(answer_class, "local/argmax")))
pred_argmax = labels[pred_label]
pred.append(pred_label)
actual.append(int(question.getAttribute(answer_class, "label")))
accuracy += 1 if pred_argmax == label else 0
verify_constraints = datanode.verifyResultsLC()
count_verify = 0
if verify_constraints:
for lc in verify_constraints:
count_verify += verify_constraints[lc]["satisfied"]
satisfy_constraint_rate += count_verify / len(verify_constraints)
satisfy_constraint_rate /= count_datanode
accuracy /= count
result_file = open("result.txt", 'a')
print("Program:", "Primal Dual" if args.pmd else "Sampling Loss" if args.sampling else "DomiKnowS",
file=result_file)
if not args.loaded:
print("Training info", file=result_file)
print("Batch Size:", args.batch_size, file=result_file)
print("Epoch:", args.epoch, file=result_file)
print("Learning Rate:", args.lr, file=result_file)
print("Beta:", args.beta, file=result_file)
print("Sampling Size:", args.sampling_size, file=result_file)
else:
print("Loaded Model Name:", args.loaded_file, file=result_file)
print("Evaluation File:", args.test_file, file=result_file)
print("Accuracy:", accuracy, file=result_file)
print("Constraints Satisfied rate:", satisfy_constraint_rate, "%", file=result_file)
print("Reasoning step:", args.reasoning_steps, file=result_file)
print("Precious:", precision_score(actual, pred, average=None), file=result_file)
print("Recall:", recall_score(actual, pred, average=None), file=result_file)
print("F1:", f1_score(actual, pred, average=None), file=result_file)
print("F1 Macro:", f1_score(actual, pred, average='macro'), file=result_file)
print("Confusion Matrix:\n", confusion_matrix(actual, pred), file=result_file)
result_file.close()
# df = pd.DataFrame(result_csv)
# df.to_csv("result.csv")
def train(program, train_set, eval_set, cur_device, limit, lr, program_name="DomiKnow", args=None):
from graph import answer_class
def evaluate():
labels = ["Yes", "No"]
count = 0
actual = []
pred = []
for datanode in tqdm.tqdm(program.populate(eval_set, device=cur_device), "Manually Evaluation"):
for question in datanode.getChildDataNodes():
count += 1
actual.append(int(question.getAttribute(answer_class, "label")))
pred.append(int(torch.argmax(question.getAttribute(answer_class, "local/argmax"))))
return accuracy_score(actual, pred)
def get_avg_loss():
if cur_device is not None:
program.model.to(cur_device)
program.model.mode(Mode.TEST)
program.model.reset()
train_loss = 0
total_loss = 0
with torch.no_grad():
for data_item in tqdm.tqdm(train_set, "Calculating Loss of training"):
loss, _, *output = program.model(data_item)
total_loss += 1
train_loss += loss
return train_loss / total_loss
best_loss = float('inf')
best_acc = 0
best_epoch = 0
old_file = None
training_file = open("training.txt", 'a')
check_epoch = args.check_epoch
print("-" * 10, file=training_file)
print("Training by ", program_name, file=training_file)
print("Learning Rate:", args.lr, file=training_file)
training_file.close()
epoch = 0
for epoch in range(check_epoch, limit, check_epoch):
training_file = open("training.txt", 'a')
if args.pmd:
program.train(train_set, c_warmup_iters=0, train_epoch_num=check_epoch,
Optim=lambda param: torch.optim.Adam(param, lr=lr, amsgrad=True),
device=cur_device)
else:
program.train(train_set, train_epoch_num=check_epoch,
Optim=lambda param: torch.optim.Adam(param, lr=lr, amsgrad=True),
device=cur_device)
accuracy = evaluate()
avg_loss = float('inf')
print("Epoch:", epoch, file=training_file)
print("Training loss: ", avg_loss, file=training_file)
print("Dev Accuracy:", accuracy * 100, "%", file=training_file)
check_condition = avg_loss <= best_loss if args.check_condition == "loss" else accuracy >= best_acc
if check_condition:
best_epoch = epoch
best_acc = accuracy
best_loss = avg_loss
# if old_file:
# os.remove(old_file)
if program_name == "PMD":
program_addition = "_beta_" + str(args.beta)
else:
program_addition = "_size_" + str(args.sampling_size)
new_file = program_name + "_" + str(epoch) + "epoch" + "_lr_" + str(args.lr) + program_addition + "_" + str(args.model)
old_file = new_file
program.save("Models/" + new_file)
training_file.close()
training_file = open("training.txt", 'a')
if epoch < limit:
if args.pmd:
program.train(train_set, c_warmup_iters=0, train_epoch_num=limit - epoch,
Optim=lambda param: torch.optim.Adam(param, lr=lr, amsgrad=True),
device=cur_device)
else:
program.train(train_set, train_epoch_num=check_epoch,
Optim=lambda param: torch.optim.AdamW(param, lr=lr, amsgrad=True),
device=cur_device)
accuracy = evaluate()
avg_loss = float('inf')
print("Epoch:", limit, file=training_file)
print("Dev Accuracy:", accuracy * 100, "%", file=training_file)
check_condition = avg_loss <= best_loss if args.check_condition == "loss" else accuracy >= best_acc
if check_condition:
best_epoch = epoch + check_epoch
best_acc = accuracy
best_loss = avg_loss
if program_name == "PMD":
program_addition = "_beta_" + str(args.beta)
else:
program_addition = "_size_" + str(args.sampling_size)
new_file = program_name + "_" + str(epoch) + "epoch" + "_lr_" + str(args.lr) + program_addition + "_" + str(args.model)
old_file = new_file
program.save("Models/" + new_file)
print("Best epoch ", best_epoch, file=training_file)
training_file.close()
return best_epoch
def main(args):
SEED = 382
np.random.seed(SEED)
random.seed(SEED)
# pl.seed_everything(SEED)
torch.manual_seed(SEED)
cuda_number = args.cuda
if cuda_number == -1:
cur_device = 'cpu'
else:
if torch.cuda.is_available():
cur_device = "cuda:" + str(cuda_number)
elif torch.backends.mps.is_available():
cur_device = "mps"
else:
cur_device = "cpu"
boolQ = args.train_file.upper() == "BOOLQ"
train_file = "train.json" if args.train_file.upper() == "ORIGIN" \
else "new_human_train.json" if args.train_file.upper() == "NEW" \
else "train_YN_v3.json" if args.train_file.upper() == "SPARTUN" \
else "boolQ/train.json" if args.train_file.upper() == "BOOLQ" \
else "ReSQ/train_resq.json" if args.train_file.upper() == "RESQ" \
else "StepGame" if args.train_file.upper() == "STEPGAME" \
else ["human_train.json", "new_human_train.json"] if args.train_file.upper() == "ALL_HUMAN" \
else "human_train.json"
file_path = ("DataSet/" + train_file) if isinstance(train_file, str) else ["DataSet/" + file_name for file_name in train_file]
training_set = DomiKnowS_reader(file_path, "YN",
type_dataset=args.train_file.upper(),
size=args.train_size,
upward_level=8,
augmented=args.train_file.upper() == "SPARTUN",
batch_size=args.batch_size,
rule_text=args.text_rules,
reasoning_steps=None if args.reasoning_steps == -1 else args.reasoning_steps)
test_file = "human_test.json" if args.test_file.upper() == "HUMAN" \
else "new_human_test.json" if args.train_file.upper() == "NEW" \
else "ReSQ/test_resq.json" if args.test_file.upper() == "RESQ" \
else "StepGame" if args.train_file.upper() == "STEPGAME" \
else ["human_test.json", "new_human_test.json"] if args.train_file.upper() == "ALL_HUMAN" \
else "test.json"
file_path = ("DataSet/" + test_file) if isinstance(test_file, str) else ["DataSet/" + file_name for file_name in test_file]
testing_set = DomiKnowS_reader(file_path, "YN",
type_dataset=args.train_file.upper(),
size=args.test_size,
augmented=False,
batch_size=args.batch_size,
rule_text=args.text_rules,
reasoning_steps=None if args.reasoning_steps == -1 else args.reasoning_steps)
eval_file = "human_dev.json" if args.test_file.upper() == "HUMAN" \
else "new_human_dev.json" if args.train_file.upper() == "NEW" \
else "boolQ/train.json" if args.train_file.upper() == "BOOLQ" \
else "ReSQ/dev_resq.json" if args.test_file.upper() == "RESQ" \
else "StepGame" if args.train_file.upper() == "STEPGAME" \
else ["human_dev.json", "new_human_dev.json"] if args.train_file.upper() == "ALL_HUMAN" \
else "dev_Spartun.json"
file_path = ("DataSet/" + eval_file) if isinstance(eval_file, str) else ["DataSet/" + file_name for file_name in eval_file]
eval_set = DomiKnowS_reader(file_path, "YN",
type_dataset=args.train_file.upper(),
size=args.test_size,
augmented=False,
batch_size=args.batch_size,
rule_text=args.text_rules,
reasoning_steps=None if args.reasoning_steps == -1 else args.reasoning_steps)
program_name = "PMD" if args.pmd else "Sampling" if args.sampling else "Base"
program = program_declaration(cur_device,
pmd=args.pmd,
beta=args.beta,
sampling=args.sampling,
sampleSize=args.sampling_size,
dropout=args.dropout,
constraints=args.constraints,
model=args.model.lower())
if args.loaded:
print(cur_device)
program.load("Models/" + args.loaded_file, map_location={'cuda:0': cur_device, 'cuda:1': cur_device, 'cuda:2': cur_device, 'cuda:3': cur_device, "cuda:4": cur_device, "cuda:5": cur_device, "cuda:6": cur_device, "cuda:7": cur_device})
eval(program, testing_set, cur_device, args)
elif args.loaded_train:
program.load("Models/" + args.loaded_file, map_location={'cuda:0': cur_device, 'cuda:1': cur_device, 'cuda:2': cur_device, 'cuda:3': cur_device, "cuda:4": cur_device, "cuda:5": cur_device, "cuda:6": cur_device, "cuda:7": cur_device})
train(program, training_set, eval_set, cur_device, args.epoch, args.lr, program_name=program_name, args=args)
else:
train(program, training_set, eval_set, cur_device, args.epoch, args.lr, program_name=program_name, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run SpaRTUN Rules Base")
parser.add_argument("--epoch", dest="epoch", type=int, default=1)
parser.add_argument("--lr", dest="lr", type=float, default=1e-5)
parser.add_argument("--cuda", dest="cuda", type=int, default=0)
parser.add_argument("--test_size", dest="test_size", type=int, default=100000)
parser.add_argument("--train_size", dest="train_size", type=int, default=100000)
parser.add_argument("--batch_size", dest="batch_size", type=int, default=100000)
parser.add_argument("--train_file", type=str, default="SPARTUN", help="Option: SpaRTUN or Human")
parser.add_argument("--test_file", type=str, default="SPARTUN", help="Option: SpaRTUN or Human")
parser.add_argument("--text_rules", type=bool, default=False, help="Including rules as text or not")
parser.add_argument("--dropout", dest="dropout", type=bool, default=False)
parser.add_argument("--pmd", dest="pmd", type=bool, default=False)
parser.add_argument("--beta", dest="beta", type=float, default=0.5)
parser.add_argument("--sampling", dest="sampling", type=bool, default=False)
parser.add_argument("--sampling_size", dest="sampling_size", type=int, default=1)
parser.add_argument("--constraints", dest="constraints", type=bool, default=False)
parser.add_argument("--loaded", dest="loaded", type=bool, default=False, help="Option to load and evaluate the model")
parser.add_argument("--loaded_file", dest="loaded_file", type=str, default="train_model")
parser.add_argument("--loaded_train", type=bool, default=False, help="Option to load and then further train")
parser.add_argument("--save", dest="save", type=bool, default=False)
parser.add_argument("--save_file", dest="save_file", type=str, default="train_model")
parser.add_argument("--reasoning_steps", dest="reasoning_steps", type=int, default=-1)
parser.add_argument("--check_epoch", dest="check_epoch", type=int, default=1)
parser.add_argument("--model", dest="model", type=str, default="bert")
parser.add_argument("--check_condition", dest="check_condition", type=str, default="acc", help="Option: acc(accuracy) or loss")
args = parser.parse_args()
main(args)