-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitting_functions_general.py
210 lines (166 loc) · 8.3 KB
/
fitting_functions_general.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import numpy as np
import scipy.constants as scc
import scipy.special as sp
import scipy.misc as scm
from scipy.special import eval_genlaguerre as laguerre
from fitting_tools import function_fitter
"""
Below are the functions which have been defined, as child classes of the class function_fitter.
Defining a new fitting function is simple! (I hope.)
Short version:
Just copy one of the classes already defined. It may be clear what needs to be changed given the examples below. If not...
Only change (1) self.parameters and (2) the definition of full_fun() (which is the function you want to fit to).
The first argument to full_fun() after "self" should be the x-axis values. Make sure the elements of the list self.parameters match all the arguments after this one.
Long version:
To define a function to be used as a fitting function, define the class as follows:
A. Define the class as a child instance of the class function_fitter.
B. __init__ should consist of 2 lines:
1. self.parameters = (a list of strings, see step C for details)
2. self.setup()
C. Define a function full_fun(self, ...) to be the function to be fitted. The first argument after self should be the x-axis, and the rest are just any arguments the function needs.
These will each later be set to either be fitted or fixed at some defined value.
The variable self.parameters should be a list of strings denoting these parameters (the ones excluding the x-axis), so the length of this list should be equal to the number of arguments
excluding the first one. These don't necessarily need to have the same name as the arguments themselves (though it's probably easier that way), but the arguments they refer to *DO* need to
be in the same order.
"""
class line(function_fitter):
def __init__(self):
self.parameters = ['m', 'b']
self.setup()
def full_fun(self, x, m, b):
return m*x + b
class power_law(function_fitter):
def __init__(self):
self.parameters = ['a', 'b']
self.setup()
def full_fun(self, x, a, b):
return a*x**b
class gaussian(function_fitter):
#defined as in grapher
def __init__(self):
self.parameters = ['center', 'scale', 'sigma', 'offset']
self.setup()
def full_fun(self, x, center, scale, sigma, offset):
return offset + scale*np.exp(-(x-center)**2 / (2*sigma**2))
class lorentzian(function_fitter):
#defined as in grapher
def __init__(self):
self.parameters = ['center', 'scale', 'fwhm', 'offset']
self.setup()
def full_fun(self, x, center, scale, fwhm, offset):
return offset + scale*0.5*fwhm/((x-center)**2.0 + fwhm**2.0/4.0)
class exponential_decay(function_fitter):
def __init__(self):
self.parameters = ['tau', 'startfrom', 'decayto']
self.setup()
def full_fun(self, times, tau, startfrom, decayto):
return startfrom + (decayto-startfrom)*(1-np.exp(-times/tau))
class gaussian_decay(function_fitter):
def __init__(self):
self.parameters = ['tau', 'startfrom', 'decayto']
self.setup()
def full_fun(self, times, tau, startfrom, decayto):
return startfrom + (decayto-startfrom)*(1-np.exp(-times**2/(2*tau**2)))
class ramsey_decay(function_fitter):
# Simple exponential decay with a sinusoudal oscillation
def __init__(self):
self.parameters = ['freq', 'tau_us', 'start_from', 'decay_to']
self.setup()
def full_fun(self, times_us, freq, tau_us, start_from, decay_to):
#convert inputs to SI
times = 1e-6 * times_us
w = 2*np.pi*freq
tau = 1e-6 * tau_us
return (start_from-decay_to)*np.exp(-times/tau)*np.cos(w*times) + decay_to
class phase_scan(function_fitter):
def __init__(self):
self.parameters = ['contrast', 'phi0', 'offset']
self.setup()
def full_fun(self, phi, contrast, phi0, offset):
phi_rad = phi*np.pi/180.0
phi0_rad = phi0*np.pi/180.0
return 0.5 + contrast/2.0*np.sin(phi_rad-phi0_rad) + offset
class parity_scan(function_fitter):
def __init__(self):
self.parameters = ['contrast', 'phi0', 'offset']
self.setup()
def full_fun(self, phi, contrast, phi0, offset):
phi_rad = phi*np.pi/180.0
phi0_rad = phi0*np.pi/180.0
return contrast/2.0*np.sin(2*(phi_rad-phi0_rad)) + offset
class cosine(function_fitter):
def __init__(self):
self.parameters = ['angfreq', 'amplitude', 'offset', 'phase_deg']
self.setup()
def full_fun(self, x, angfreq, amplitude, offset, phase_deg):
return offset + amplitude*np.cos(angfreq*x + np.pi/180*phase_deg)
class rabi_flop_thermal(function_fitter):
# Supports up to second order sidebands
def __init__(self):
self.parameters = ['Omega_kHz', 'delta_kHz', 'eta', 'sideband_order', 'scale', 'nbar', 'turnon_delay_us']
self.setup()
def full_fun(self, times_us, Omega_kHz, delta_kHz, eta, sideband_order, scale, nbar, turnon_delay_us):
times = 1e-6 * np.array([(t if t>=0 else 0) for t in (times_us-turnon_delay_us)])
Omega = 1e3 * 2*np.pi * Omega_kHz
delta = 1e3 * 2*np.pi * delta_kHz
nmax = 1000
ns = np.arange(nmax)
omega_n = Omega*self._compute_rabi_coupling(eta, sideband_order, ns)
p_n = 1.0/ (nbar + 1.0) * (nbar / (nbar + 1.0))**ns
exc_n = np.outer(p_n * omega_n**2/(omega_n**2+delta**2), np.ones_like(times)) * np.sin(np.outer(np.sqrt(omega_n**2 + delta**2), times/2.0))**2
exc = scale * np.sum(exc_n, axis = 0)
return exc
def _compute_rabi_coupling(self, eta, sideband_order, ns):
if sideband_order == 0:
coupling_func = lambda n: np.exp(-1./2*eta**2) * laguerre(n, 0, eta**2)
elif sideband_order == 1:
coupling_func = lambda n: np.exp(-1./2*eta**2) * eta**(1)*(1./(n+1.))**0.5 * laguerre(n, 1, eta**2)
elif sideband_order == 2:
coupling_func = lambda n: np.exp(-1./2*eta**2) * eta**(2)*(1./((n+1.)*(n+2)))**0.5 * laguerre(n, 2, eta**2)
elif sideband_order == -1:
coupling_func = lambda n: 0 if n == 0 else np.exp(-1./2*eta**2) * eta**(1)*(1./(n))**0.5 * laguerre(n - 1, 1, eta**2)
elif sideband_order == -2:
coupling_func = lambda n: 0 if n <= 1 else np.exp(-1./2*eta**2) * eta**(2)*(1./((n)*(n-1.)))**0.5 * laguerre(n - 2, 2, eta**2)
return np.array([coupling_func(n) for n in ns])
class poissonian(function_fitter):
def __init__(self):
# mu is center, k is value, k has to be positive
self.parameters = ['mu']
self.setup()
def full_fun(self, k, mu):
return np.exp(-mu)*mu**k/scm.factorial(k)
class poissonian2(function_fitter):
# two poisson mass functions for fitting to readout histograms.
# (assuming no relevant D state decay)
def __init__(self):
# mu is center, k is value, k has to be positive
self.parameters = ['mu1', 'mu2']
self.setup()
def full_fun(self,k,mu1,mu2):
return np.exp(-mu1)*mu1**k/scm.factorial(k) + np.exp(-mu2)*mu2**k/scm.factorial(k)
class spectrum_2level(function_fitter):
# Spectrum of an ideal 2-level transition
def __init__(self):
self.parameters = ['f0_MHz', 'Omega_kHz', 'time_us', 'scale']
self.setup()
def full_fun(self, f_MHz, f0_MHz, Omega_kHz, time_us, scale):
delta = 1e6 * 2*np.pi * (f_MHz-f0_MHz)
Omega = 1e3 * 2*np.pi * Omega_kHz
time = 1e-6 * time_us
return scale * Omega**2/(Omega**2+delta**2) * np.sin(np.sqrt(Omega**2+delta**2)*time/2)**2
class spectrum(function_fitter):
# Spectrum whose value at delta = 0 is not defined by the value of sin^2(Omega*t/2) but rather directly by the parameter 'scale'
def __init__(self):
self.parameters = ['f0_MHz', 'Omega_kHz', 'scale']
self.setup()
def full_fun(self, f, f0_MHz, Omega_kHz, scale):
delta = 1e6 * 2*np.pi * (f-f0_MHz)
Omega = 1e3 * 2*np.pi * Omega_kHz
time = np.pi / Omega
return scale * Omega**2/(Omega**2+delta**2) * np.sin(np.sqrt(Omega**2+delta**2)*time/2)**2
class sinc_squared(function_fitter):
def __init__(self):
self.parameters = ['x0', 'width', 'scale']
self.setup()
def full_fun(self, x, x0, width, scale):
return scale*np.sinc((x-x0)/width)**2