-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtree.c
243 lines (230 loc) · 5.73 KB
/
tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include "tree.h"
#include <stdlib.h>
#include "fatal.h"
#define bool int
struct TreeNode
{
ElementType Element;
SearchTree Left;
SearchTree Right;
};
/* START: fig4_17.txt */
SearchTree
MakeEmpty( SearchTree T )
{
if( T != NULL )
{
MakeEmpty( T->Left );
MakeEmpty( T->Right );
free( T );
}
return NULL;
}
/* END */
/* START: fig4_18.txt */
Position
Find( ElementType X, SearchTree T )
{
if( T == NULL )
return NULL;
if( X < T->Element )
return Find( X, T->Left );
else
if( X > T->Element )
return Find( X, T->Right );
else
return T;
}
/* END */
/* START: fig4_19.txt */
Position
FindMin( SearchTree T )
{
if( T == NULL )
return NULL;
else
if( T->Left == NULL )
return T;
else
return FindMin( T->Left );
}
/* END */
/* START: fig4_20.txt */
Position
FindMax( SearchTree T )
{
if( T != NULL )
while( T->Right != NULL )
T = T->Right;
return T;
}
/* END */
/* START: fig4_22.txt */
SearchTree
Insert( ElementType X, SearchTree T )
{
/* 1*/ if( T == NULL )
{
/* Create and return a one-node tree */
/* 2*/ T = malloc( sizeof( struct TreeNode ) );
/* 3*/ if( T == NULL )
/* 4*/ FatalError( "Out of space!!!" );
else
{
/* 5*/ T->Element = X;
/* 6*/ T->Left = T->Right = NULL;
}
}
else
/* 7*/ if( X < T->Element )
/* 8*/ T->Left = Insert( X, T->Left );
else
/* 9*/ if( X > T->Element )
/*10*/ T->Right = Insert( X, T->Right );
/* Else X is in the tree already; we'll do nothing */
/*11*/ return T; /* Do not forget this line!! */
}
/* END */
/* START: fig4_25.txt */
SearchTree
Delete( ElementType X, SearchTree T )
{
Position TmpCell;
if( T == NULL )
Error( "Element not found" );
else
if( X < T->Element ) /* Go left */
T->Left = Delete( X, T->Left );
else
if( X > T->Element ) /* Go right */
T->Right = Delete( X, T->Right );
else /* Found element to be deleted */
if( T->Left && T->Right ) /* Two children */
{
/* Replace with smallest in right subtree */
TmpCell = FindMin( T->Right );
T->Element = TmpCell->Element;
T->Right = Delete( T->Element, T->Right );
}
else /* One or zero children */
{
TmpCell = T;
if( T->Left == NULL ) /* Also handles 0 children */
T = T->Right;
else if( T->Right == NULL )
T = T->Left;
free( TmpCell );
}
return T;
}
/* END */
ElementType
Retrieve( Position P )
{
return P->Element;
}
void preorder(SearchTree T)
{
if (T == NULL)
{
return 0;
}
else
{
printf("%d", T->Element);
preorder(T->Left);
//recursive function is used to implement traversal techniques
preorder(T->Right);
}
}
void postorder(SearchTree T)
{
if (T == NULL)
{
return 0;
}
else
{
//recursive function is used to implement traversal techniques
postorder(T->Left);
postorder(T->Right);
printf("%d", T->Element);
}
}
void inorder(SearchTree T)
{
if (T == NULL)
{
return 0;
}
else
{
//recursive function is used to implement traversal techniques
inorder(T->Left);
printf("%d", T->Element);
inorder(T->Right);
}
}
void Sorting(SearchTree T)
{
if (T == NULL)
{
return 0;
}
else
{
//recursive function is used to implement traversal techniques
inorder(T->Right);
printf("%d", T->Element);
inorder(T->Left);
}
}
/* Returns true if binary tree with root as root is height-balanced */
//bool CheckBalance(SearchTree T)
//{
// int lh; /* for height of left subtree */
// int rh; /* for height of right subtree */
// lh = height(T->Left);
// rh = height(T->Right);
// /* If tree is empty then return true */
// if (T == NULL)
// {
// return 2;
// }
// /* Get the height of left and right sub trees */
// if (abs(lh - rh) <= 1 && CheckBalance(T->Left) && CheckBalance(T->Right))
// {
// return 1;
// }
// /* If we reach here then tree is not height-balanced */
// return 0;
//}
//int maxi(int a, int b)
//{
// return (a >= b) ? a : b;
//}
///* The function Compute the "height" of a tree. Height is the
// number of nodes along the longest path from the root node
// down to the farthest leaf node.*/
int heightL(SearchTree T)
{
int hl = 0;
T = T->Left;
while (T != NULL)
{
hl++;
T = T->Left;
}
return hl;
}
int heightR(SearchTree T)
{
int hr = 0;
T = T->Right;
while (T != NULL)
{
hr++;
T = T->Right;
}
return hr;
}