-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCode
53 lines (43 loc) · 1.78 KB
/
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
% IoT Edge Processing for Dengue Control using MATLAB
% Step 1: Load the environmental data
% Replace this with actual sensor data collection
temperature = [30, 31, 29, 32, 33, 34]; % Example temperature data
humidity = [80, 85, 82, 81, 84, 83]; % Example humidity data
% Step 2: Preprocessing on edge (Filter noise or irrelevant data)
smoothed_temperature = movmean(temperature, 3); % Smooth the data
smoothed_humidity = movmean(humidity, 3);
% Step 3: Feature extraction on the edge
avg_temp = mean(smoothed_temperature); % Extract average temperature
avg_humidity = mean(smoothed_humidity); % Extract average humidity
% Step 4: Simple threshold-based analysis on edge device
% These thresholds could be derived from research about dengue outbreaks
if avg_temp > 30 && avg_humidity > 80
warning('Potential Dengue Outbreak Risk Detected!');
else
disp('No immediate Dengue risk.');
end
% Step 5: Cloud-based processing (assuming data sent to cloud)
% Here, we simulate cloud processing with machine learning models
% Assuming cloud runs a predictive model (e.g., logistic regression, SVM)
% Load a pre-trained machine learning model (You would train this separately)
% Model should predict outbreak risk based on multiple variables
% Example using a random classifier for demonstration
outbreak_risk = randi([0, 1]); % Random 0 or 1 to simulate ML model prediction
if outbreak_risk == 1
disp('High risk of Dengue outbreak. Take action!');
% Trigger actions like spraying insecticides, etc.
else
disp('Low risk of Dengue outbreak.');
end
% Step 6: Visualization
figure;
subplot(2, 1, 1);
plot(temperature, '-o');
title('Temperature Data');
xlabel('Time');
ylabel('Temperature (°C)');
subplot(2, 1, 2);
plot(humidity, '-o');
title('Humidity Data');
xlabel('Time');
ylabel('Humidity (%)');