-
Notifications
You must be signed in to change notification settings - Fork 3
/
extract_base_features.py
208 lines (163 loc) · 8.22 KB
/
extract_base_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from __future__ import division
from __future__ import print_function
from absl import app, flags, logging
from absl.flags import FLAGS
import glob
from gluoncv.model_zoo.yolo.darknet import darknet53
from gluoncv.model_zoo.mobilenet import get_mobilenet
from gluoncv.data.batchify import Tuple, Stack, Pad
import mxnet as mx
from mxnet import gluon
from mxnet.gluon.nn import BatchNorm
import logging
import numpy as np
import os
from tqdm import tqdm
from datasets.pascalvoc import VOCDetection
from datasets.mscoco import COCODetection
from datasets.imgnetdet import ImageNetDetection
from datasets.imgnetvid import ImageNetVidDetection
from datasets.detectset import DetectSet
from models.definitions.yolo.transforms import YOLO3VideoInferenceTransform
from utils.general import as_numpy
from utils.video import video_to_frames
# disable autotune
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
logging.basicConfig(level=logging.INFO)
flags.DEFINE_string('network', 'darknet53',
'Base network name: darknet53 or mobilenet1.0.')
flags.DEFINE_string('dataset', 'voc',
'Dataset or .jpg image or .mp4 video or .txt image/video list.')
flags.DEFINE_string('save_dir', 'features',
'Save directory to save images.')
flags.DEFINE_integer('batch_size', 1,
'Batch size for detection: higher faster, but more memory intensive.')
flags.DEFINE_integer('data_shape', 416,
'Input data shape.')
flags.DEFINE_float('frames', 0.04,
'Based per video - and is NOT randomly sampled:'
'If <1: Percent of the full dataset to take eg. .04 (every 25th frame) - range(0, len(video), int(1/frames))'
'If >1: This many frames per video - range(0, len(video), int(ceil(len(video)/frames)))'
'If =1: Every sample used - full dataset')
flags.DEFINE_list('gpus', [0],
'GPU IDs to use. Use comma or space for multiple eg. 0,1 or 0 1.')
flags.DEFINE_integer('num_workers', 8,
'The number of workers should be picked so that it’s equal to number of cores on your machine'
' for max parallelization.')
def get_dataset(dataset_name):
if dataset_name.lower() == 'voc':
# dataset = VOCDetection(splits=[(2007, 'test')], inference=True)
dataset = VOCDetection(splits=[(2007, 'trainval'), (2012, 'trainval')], inference=True)
elif dataset_name.lower() == 'coco':
# dataset = COCODetection(splits=['instances_val2017'], allow_empty=True, inference=True)
dataset = COCODetection(splits=['instances_train2017'], use_crowd=False, inference=True)
elif dataset_name.lower() == 'det':
# dataset = ImageNetDetection(splits=['val'], allow_empty=True, inference=True)
dataset = ImageNetDetection(splits=['train'], allow_empty=True, inference=True)
elif dataset_name.lower() == 'vid':
# dataset = ImageNetVidDetection(splits=[(2017, 'val')], allow_empty=True, frames=FLAGS.frames, inference=True)
dataset = ImageNetVidDetection(splits=[(2017, 'train')], allow_empty=True, frames=FLAGS.frames,
inference=True)
elif dataset_name[-4:] == '.txt': # list of images or list of videos
with open(dataset_name, 'r') as f:
files = [l.rstrip() for l in f.readlines()]
if files[0][-4:] == '.mp4': # list of videos
img_list = list()
for file in files: # make frames in tmp folder
frames_dir = video_to_frames(file, os.path.join('data', 'tmp'),
os.path.join('data', 'tmp', 'stats'), overwrite=False)
img_list += glob.glob(frames_dir + '/**/*.jpg', recursive=True)
elif files[0][-4:] == '.jpg': # list of images
img_list = files
dataset = DetectSet(img_list)
elif dataset_name[-4:] == '.jpg': # single image
dataset = DetectSet([dataset_name])
elif dataset_name[-4:] == '.mp4':
# make frames in tmp folder
frames_dir = video_to_frames(dataset_name, os.path.join('data', 'tmp'),
os.path.join('data', 'tmp', 'stats'), overwrite=False)
img_list = glob.glob(frames_dir + '/**/*.jpg', recursive=True)
dataset = DetectSet(img_list)
else:
raise NotImplementedError('Dataset: {} not implemented.'.format(dataset_name))
return dataset
def get_dataloader(dataset, batch_size):
width, height = FLAGS.data_shape, FLAGS.data_shape
batchify_fn = Tuple(Stack(), Pad(pad_val=-1), Stack())
loader = gluon.data.DataLoader(dataset.transform(YOLO3VideoInferenceTransform(width, height)),
batch_size, False, last_batch='keep', num_workers=FLAGS.num_workers,
batchify_fn=batchify_fn)
return loader
def extract(save_dir, net, dataset, loader, ctx, net_name='darknet53'):
net.collect_params().reset_ctx(ctx)
net.hybridize()
with tqdm(total=len(dataset), desc="Extracting") as pbar:
for ib, batch in enumerate(loader):
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0, even_split=False)
label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0, even_split=False)
idxs = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0, even_split=False)
f1s = []
f2s = []
f3s = []
sidxs = []
for x, y, sidx in zip(data, label, idxs):
if net_name == 'darknet53': # darknet
f1 = net.features[:15](x)
f2 = net.features[15:24](f1)
f3 = net.features[24:](f2)
else: # mobilenet
f1 = net.features[:33](x)
f2 = net.features[33:69](f1)
f3 = net.features[69:-2](f2)
f1s.append(f1.asnumpy())
f2s.append(f2.asnumpy())
f3s.append(f3.asnumpy())
sidxs.append(sidx.asnumpy())
for f1, f2, f3, sidx in zip(f1s, f2s, f3s, sidxs):
for i, idx in enumerate(sidx):
img_path = dataset.sample_path(int(idx))
file_id = img_path.split(os.sep)[-1][:-4]
if FLAGS.dataset == 'vid':
file_id = os.path.join(img_path.split(os.sep)[-2], img_path.split(os.sep)[-1][:-5])
os.makedirs(os.path.join(save_dir, img_path.split(os.sep)[-2]), exist_ok=True)
np.save(os.path.join(save_dir, file_id + '_F1.npy'), f1[i])
np.save(os.path.join(save_dir, file_id + '_F2.npy'), f2[i])
np.save(os.path.join(save_dir, file_id + '_F3.npy'), f3[i])
pbar.update(batch[0].shape[0])
return None
def main(_argv):
# get dataset
dataset = get_dataset(FLAGS.dataset)
# fix for tiny datasets of 1 or few elements
batch_size = FLAGS.batch_size
if len(dataset) < batch_size:
batch_size = len(dataset)
# handle gpu usage
gpus = FLAGS.gpus
if batch_size < len(gpus):
gpus = [int(gpus[0])]
# contexts
ctx = [mx.gpu(int(i)) for i in gpus]
ctx = ctx if ctx else [mx.cpu()]
# dataloader
loader = get_dataloader(dataset, batch_size)
# setup network
if FLAGS.network == 'darknet53':
net = darknet53(root='models', pretrained=True, norm_layer=BatchNorm, norm_kwargs=None)
elif FLAGS.network == 'mobilenet1.0':
net = get_mobilenet(root='models', multiplier=1, pretrained=True, norm_layer=BatchNorm, norm_kwargs=None)
else:
raise NotImplementedError('Backbone CNN model {} not implemented.'.format(FLAGS.network))
# organise the save directories for the results
if FLAGS.dataset in ['voc', 'coco', 'det', 'vid']:
save_dir = os.path.join('models', FLAGS.network, FLAGS.save_dir, FLAGS.dataset)
else:
save_dir = os.path.join('models', FLAGS.network, FLAGS.save_dir)
os.makedirs(save_dir, exist_ok=True)
# attempt to load predictions
extract(save_dir, net, dataset, loader, ctx, net_name=FLAGS.network)
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass