-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathmain.py
280 lines (240 loc) · 10.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
import os
import sys
from typing import Optional, cast
# Add folder root to path to allow us to use relative imports regardless of what directory the script is run from
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
import src.hf_bert as hf_bert_module
import src.create_bert as bert_module
import src.text_data as text_data_module
from src.optim.create_param_groups import create_param_groups
from composer import Trainer, algorithms
from composer.callbacks import (HealthChecker, LRMonitor, MemoryMonitor,
OptimizerMonitor, RuntimeEstimator,
SpeedMonitor)
from composer.loggers import WandBLogger
from composer.optim import DecoupledAdamW
from composer.optim.scheduler import (ConstantWithWarmupScheduler,
CosineAnnealingWithWarmupScheduler,
LinearWithWarmupScheduler)
from composer.utils import dist, reproducibility
from omegaconf import DictConfig
from omegaconf import OmegaConf as om
def update_batch_size_info(cfg: DictConfig):
global_batch_size, device_microbatch_size = cfg.global_train_batch_size, cfg.device_train_microbatch_size
if global_batch_size % dist.get_world_size() != 0:
raise ValueError(
f'Global batch size {global_batch_size} is not divisible by {dist.get_world_size()} '
'as a result, the batch size would be truncated, please adjust `global_batch_size` '
f'to be divisible by world size, {dist.get_world_size()}.')
device_train_batch_size = global_batch_size // dist.get_world_size()
if isinstance(device_microbatch_size, int):
if device_microbatch_size > device_train_batch_size:
print(
f'WARNING: device_train_microbatch_size > device_train_batch_size, '
f'will be reduced from {device_microbatch_size} -> {device_train_batch_size}.'
)
device_microbatch_size = device_train_batch_size
cfg.n_gpus = dist.get_world_size()
cfg.device_train_batch_size = device_train_batch_size
cfg.device_train_microbatch_size = device_microbatch_size
# Safely set `device_eval_batch_size` if not provided by user
if 'device_eval_batch_size' not in cfg:
if cfg.device_train_microbatch_size == 'auto':
cfg.device_eval_batch_size = 1
else:
cfg.device_eval_batch_size = cfg.device_train_microbatch_size
return cfg
def log_config(cfg: DictConfig):
print(om.to_yaml(cfg))
if 'wandb' in cfg.get('loggers', {}):
try:
import wandb
except ImportError as e:
raise e
if wandb.run:
wandb.config.update(om.to_container(cfg, resolve=True))
def build_algorithm(name, kwargs):
if name == 'gradient_clipping':
return algorithms.GradientClipping(**kwargs)
elif name == 'alibi':
return algorithms.Alibi(**kwargs)
elif name == 'fused_layernorm':
return algorithms.FusedLayerNorm(**kwargs)
elif name == 'gated_linear_units':
return algorithms.GatedLinearUnits(**kwargs)
elif name == 'low_precision_layernorm':
return algorithms.LowPrecisionLayerNorm(**kwargs)
else:
raise ValueError(f'Not sure how to build algorithm: {name}')
def build_callback(name, kwargs):
if name == 'lr_monitor':
return LRMonitor()
elif name == 'memory_monitor':
return MemoryMonitor()
elif name == 'speed_monitor':
return SpeedMonitor(window_size=kwargs.get('window_size', 1),
gpu_flops_available=kwargs.get(
'gpu_flops_available', None))
elif name == 'runtime_estimator':
return RuntimeEstimator()
elif name == 'optimizer_monitor':
return OptimizerMonitor(log_optimizer_metrics=kwargs.get(
'log_optimizer_metrics', True),)
elif name == 'health_checker':
return HealthChecker(**kwargs)
else:
raise ValueError(f'Not sure how to build callback: {name}')
def build_logger(name, kwargs):
if name == 'wandb':
return WandBLogger(**kwargs)
else:
raise ValueError(f'Not sure how to build logger: {name}')
def build_scheduler(cfg):
if cfg.name == 'constant_with_warmup':
return ConstantWithWarmupScheduler(t_warmup=cfg.t_warmup)
elif cfg.name == 'cosine_with_warmup':
return CosineAnnealingWithWarmupScheduler(t_warmup=cfg.t_warmup,
alpha_f=cfg.alpha_f)
elif cfg.name == 'linear_decay_with_warmup':
return LinearWithWarmupScheduler(t_warmup=cfg.t_warmup,
alpha_f=cfg.alpha_f)
else:
raise ValueError(f'Not sure how to build scheduler: {cfg.name}')
def build_optimizer(cfg, model):
if cfg.name == 'decoupled_adamw':
return DecoupledAdamW(create_param_groups(cfg, model),
lr=cfg.lr,
betas=cfg.betas,
eps=cfg.eps,
weight_decay=cfg.weight_decay)
elif cfg.name == 'adamw':
from torch.optim import AdamW
return AdamW(create_param_groups(None, model),
lr=cfg.lr,
betas=cfg.betas,
eps=cfg.eps,
weight_decay=cfg.weight_decay)
else:
raise ValueError(f'Not sure how to build optimizer: {cfg.name}')
def build_dataloader(cfg, tokenizer, device_batch_size):
if cfg.name == 'text':
return text_data_module.build_text_dataloader(cfg, tokenizer,
device_batch_size)
else:
raise ValueError(f'Not sure how to build dataloader with config: {cfg}')
def build_model(cfg: DictConfig):
if cfg.name == 'hf_bert':
return hf_bert_module.create_hf_bert_mlm(
pretrained_model_name=cfg.pretrained_model_name,
use_pretrained=cfg.get('use_pretrained', None),
model_config=cfg.get('model_config', None),
tokenizer_name=cfg.get('tokenizer_name', None),
gradient_checkpointing=cfg.get('gradient_checkpointing', None))
elif cfg.name == 'bert':
return bert_module.create_bert_mlm(
pretrained_model_name=cfg.pretrained_model_name,
pretrained_checkpoint=cfg.get('pretrained_checkpoint', None),
model_config=cfg.get('model_config', None),
tokenizer_name=cfg.get('tokenizer_name', None),
gradient_checkpointing=cfg.get('gradient_checkpointing', None))
else:
raise ValueError(f'Not sure how to build model with name={cfg.name}')
def main(cfg: DictConfig,
return_trainer: bool = False,
do_train: bool = True) -> Optional[Trainer]:
print('Training using config: ')
print(om.to_yaml(cfg))
reproducibility.seed_all(cfg.seed)
# Get batch size info
cfg = update_batch_size_info(cfg)
# Build Model
print('Initializing model...')
model = build_model(cfg.model)
n_params = sum(p.numel() for p in model.parameters())
print(f'{n_params=:.4e}')
# Dataloaders
print('Building train loader...')
train_loader = build_dataloader(
cfg.train_loader,
model.tokenizer,
cfg.global_train_batch_size // dist.get_world_size(),
)
print('Building eval loader...')
global_eval_batch_size = cfg.get('global_eval_batch_size',
cfg.global_train_batch_size)
eval_loader = build_dataloader(
cfg.eval_loader,
model.tokenizer,
global_eval_batch_size // dist.get_world_size(),
)
# Optimizer
optimizer = build_optimizer(cfg.optimizer, model)
# Scheduler
scheduler = build_scheduler(cfg.scheduler)
# Loggers
loggers = [
build_logger(name, logger_cfg)
for name, logger_cfg in cfg.get('loggers', {}).items()
]
# Callbacks
callbacks = [
build_callback(name, callback_cfg)
for name, callback_cfg in cfg.get('callbacks', {}).items()
]
# Algorithms
algorithms = [
build_algorithm(name, algorithm_cfg)
for name, algorithm_cfg in cfg.get('algorithms', {}).items()
]
if cfg.get('run_name') is None:
cfg.run_name = os.environ.get('COMPOSER_RUN_NAME', 'bert')
# Build the Trainer
trainer = Trainer(
run_name=cfg.run_name,
seed=cfg.seed,
model=model,
algorithms=algorithms,
train_dataloader=train_loader,
eval_dataloader=eval_loader,
train_subset_num_batches=cfg.get('train_subset_num_batches', -1),
eval_subset_num_batches=cfg.get('eval_subset_num_batches', -1),
optimizers=optimizer,
schedulers=scheduler,
max_duration=cfg.max_duration,
eval_interval=cfg.eval_interval,
progress_bar=cfg.progress_bar,
log_to_console=cfg.log_to_console,
console_log_interval=cfg.console_log_interval,
loggers=loggers,
callbacks=callbacks,
precision=cfg.precision,
device=cfg.get('device', None),
device_train_microbatch_size=cfg.get('device_train_microbatch_size',
'auto'),
save_folder=cfg.get('save_folder', None),
save_interval=cfg.get('save_interval', '1000ba'),
save_num_checkpoints_to_keep=cfg.get('save_num_checkpoints_to_keep',
-1),
save_overwrite=cfg.get('save_overwrite', False),
load_path=cfg.get('load_path', None),
load_weights_only=cfg.get('load_weights_only', False),
python_log_level=cfg.get('python_log_level', None),
autoresume=cfg.get('autoresume'),
)
print('Logging config...')
log_config(cfg)
if do_train:
print('Starting training...')
trainer.fit()
if return_trainer:
return trainer
if __name__ == '__main__':
yaml_path, args_list = sys.argv[1], sys.argv[2:]
with open(yaml_path) as f:
yaml_cfg = om.load(f)
cli_cfg = om.from_cli(args_list)
cfg = om.merge(yaml_cfg, cli_cfg)
cfg = cast(DictConfig, cfg) # for type checking
main(cfg)