-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
57 lines (45 loc) · 2.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
from keras.utils.np_utils import to_categorical
import random,shutil
from keras.models import Sequential
from keras.layers import Dropout,Conv2D,Flatten,Dense, MaxPooling2D, BatchNormalization
from keras.models import load_model
def generator(dir, gen=image.ImageDataGenerator(rescale=1./255), shuffle=True,batch_size=1,target_size=(24,24),class_mode='categorical' ):
return gen.flow_from_directory(dir,batch_size=batch_size,shuffle=shuffle,color_mode='grayscale',class_mode=class_mode,target_size=target_size)
BS= 32
TS=(24,24)
train_batch= generator('data/train',shuffle=True, batch_size=BS,target_size=TS)
valid_batch= generator('data/valid',shuffle=True, batch_size=BS,target_size=TS)
SPE= len(train_batch.classes)//BS
VS = len(valid_batch.classes)//BS
print(SPE,VS)
# img,labels= next(train_batch)
# print(img.shape)
model = Sequential([
Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(24,24,1)),
MaxPooling2D(pool_size=(1,1)),
Conv2D(32,(3,3),activation='relu'),
MaxPooling2D(pool_size=(1,1)),
#32 convolution filters used each of size 3x3
#again
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D(pool_size=(1,1)),
#64 convolution filters used each of size 3x3
#choose the best features via pooling
#randomly turn neurons on and off to improve convergence
Dropout(0.25),
#flatten since too many dimensions, we only want a classification output
Flatten(),
#fully connected to get all relevant data
Dense(128, activation='relu'),
#one more dropout for convergence' sake :)
Dropout(0.5),
#output a softmax to squash the matrix into output probabilities
Dense(2, activation='softmax')
])
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit_generator(train_batch, validation_data=valid_batch,epochs=15,steps_per_epoch=SPE ,validation_steps=VS)
model.save('models/cnnCat2.h5', overwrite=True)